Saltar al contenido
MilliporeSigma

Gi-independent macrophage chemotaxis to lysophosphatidylcholine via the immunoregulatory GPCR G2A.

Blood (2004-09-24)
Li V Yang, Caius G Radu, Li Wang, Mireille Riedinger, Owen N Witte
RESUMEN

G2A is a G-protein-coupled receptor (GPCR) involved in immune regulation. Previous studies have shown that lysophosphatidylcholine (LPC), a bioactive lipid associated with atherosclerosis and autoimmunity, acts through G2A to induce diverse biologic effects. Production of LPC during cell apoptosis serves as a chemotactic signal for macrophage recruitment. Here we demonstrate that macrophage chemotaxis to LPC is dependent on G2A function. Wild-type but not G2A-deficient mouse peritoneal macrophages migrated toward LPC. RNAi-mediated knockdown of G2A in J774A.1 macrophages abolished LPC-induced chemotaxis, whereas overexpression of G2A significantly enhanced this process. Mutation of the conserved DRY motif of G2A resulted in loss of chemotaxis to LPC, suggesting a requirement for G-protein signaling. Unlike most GPCRs, including the chemokine receptors, coupling to G(i) is not required for LPC/G2A-mediated chemotaxis, but coupling to G(q/11) and G(12/13) is necessary as judged by inhibition with dominant negative forms of these alpha subunits or with regulators of G-protein signaling (RGS) constructs. Collectively, these data establish that pertussis toxin-insensitive G2A signaling regulates macrophage chemotaxis to LPC. Defects in this signaling pathway may be related to the pathogenesis of systemic autoimmune disease.