Saltar al contenido
MilliporeSigma
  • Inhibition of Calcium/Calmodulin-Dependent Protein Kinase IIα Suppresses Oxidative Stress in Cerebral Ischemic Rats Through Targeting Glucose 6-Phosphate Dehydrogenase.

Inhibition of Calcium/Calmodulin-Dependent Protein Kinase IIα Suppresses Oxidative Stress in Cerebral Ischemic Rats Through Targeting Glucose 6-Phosphate Dehydrogenase.

Neurochemical research (2019-03-29)
Yamin Wei, Rui Wang, Junfang Teng
RESUMEN

Ischemic stroke is a leading cause of mortality and morbidity worldwide, and oxidative stress plays a significant role in the ischemia stage and reperfusion stage. Previous studies have indicated that both calcium/calmodulin-dependent protein kinase II (CaMKII) and glucose 6-phosphate dehydrogenase (G6PD) are involved in the oxidative stress. Thus, the aim of this study was to investigate the roles of CaMKIIα, an important isoform of CaMKII, and G6PD in a rat model of middle cerebral artery occlusion (MCAO). Intracerebroventricular injection of small interfering ribonucleic acid (siRNA) for CaMKIIα was performed at 48 h pre-MCAO surgery. Immunofluorescence Staining and western blot were performed to detect the expression of p-CaMKIIα and G6PD in the cortices. 2, 3, 5-Triphenyltetrazolium chloride (TTC) staining was performed to investigate the infarct volume. In addition, neurological deficit, reactive oxygen species (ROS), ratio of reduced-to-oxidized glutathione (GSH/GSSG) and ratio of reduced-to-oxidized oxidized nicotinamide adenine dinucleotide phosphate (NADPH/NADP+) were assessed. The results indicated that both p-CaMKIIα and G6PD were widely located in the neurons and astrocytes, and their expression was gradually increased in the cortices after MCAO, which was accompanied by increased level of ROS and decreased levels of GSH/GSSG and NADPH/NADP+. However, after treatment with siRNA for CaMKIIα, p-CaMKIIα expression was decreased and G6PD expression was increased. Moreover, inhibition of CaMKIIα improved the neurological deficit, reduced the infarct volume, decreased the level of ROS and increased the levels of GSH/GSSG and NADPH/NADP+. The results suggested that CaMKIIα inhibition exerted neuroprotective effects through regulating G6PD expression, which provides a new target for prevention and treatment of stroke.