Saltar al contenido
MilliporeSigma

Endothelial Sox17 promotes allergic airway inflammation.

The Journal of allergy and clinical immunology (2019-04-01)
Eun Hee Ha, Jun-Pyo Choi, Hyouk-Soo Kwon, Hyeung Ju Park, Sang Joon Lah, Keun-Ai Moon, Seung-Hyo Lee, Injune Kim, You Sook Cho
RESUMEN

IL-33, levels of which are known to be increased in patients with eosinophilic asthma and which is suggested as a therapeutic target for it, activates endothelial cells in which Sry-related high-mobility-group box (Sox) 17, an endothelium-specific transcription factor, was upregulated. We investigated the relationship between Sox17 and IL-33 and the possible role of Sox17 in the pathogenesis of asthma using a mouse model of airway inflammation. We used ovalbumin (OVA) to induce airway inflammation in endothelium-specific Sox17 null mutant mice and used IL-33 neutralizing antibody to evaluate the interplay between IL-33 and Sox17. We evaluated airway inflammation and measured levels of various cytokines, chemokines, and adhesion molecules. We also carried out loss- or gain-of-function experiments for Sox17 in human endothelial cells. Levels of IL-33 and Sox17 were significantly increased in the lungs of OVA-challenged mice. Anti-IL-33 neutralizing antibody treatment attenuated not only OVA-induced airway inflammation but also Sox17 expression in pulmonary endothelial cells. Importantly, endothelium-specific deletion of Sox17 resulted in significant alleviation of various clinical features of asthma, including airway inflammation, immune cell infiltration, cytokine/chemokine production, and airway hyperresponsiveness. Sox17 deletion also resulted in decreased densities of Ly6chigh monocytes and inflammatory dendritic cells in the lungs. In IL-33-stimulated human endothelial cells, Sox17 showed positive correlation with CCL2 and intercellular adhesion molecule 1 levels. Lastly, Sox17 promoted monocyte adhesion to endothelial cells and upregulated the extracellular signal-regulated kinase-signal transducer and activator of transcription 3 pathway. Sox17 was regulated by IL-33, and its genetic ablation in endothelial cells resulted in alleviation of asthma-related pathophysiologic features. Sox17 might be a potential target for asthma management.