Saltar al contenido
MilliporeSigma

Glioma-derived mutations in IDH: from mechanism to potential therapy.

Biochemical and biophysical research communications (2010-06-01)
Yuejun Fu, Rui Huang, Jun Du, Renjia Yang, Na An, Aihua Liang
RESUMEN

Heterozygous mutations in either the R132 residue of isocitrate dehydrogenase I (IDH1) or the R172 residue of IDH2 in human gliomas were recently highlighted. Heterozygous mutations in the IDH1 occur in the majority of grade II and grade III gliomas and secondary glioblastomas and change the structure of the enzyme, which diminishes its ability to convert isocitrate (ICT) to alpha-ketoglutarate (alpha-KG) and provides it with a newly acquired ability to convert alpha-KG to R(-)-2-hydroxyglutarate [R(-)-2HG]. The IDH1 and IDH2 mutations are relevant to the progression of gliomas, the prognosis and treatment of the patients with gliomas harboring the mutation. In this paper, we reviewed these recent findings which were essential for the further exploration of human glioma cancer and might be responsible for developing a newer and more effective therapeutic approach in clinical treatment of this cancer.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Isocitrate Dehydrogenase 1 (NADP+) human, recombinant, expressed in Sf9 cells, ≥90% (SDS-PAGE)
Número de referencia del producto (SKU)
Tamaño de envase
Disponibilidad
Precio
Cantidad