Saltar al contenido
MilliporeSigma
  • Synthesis and Characterization of Tris(trimethylsilyl)siloxide Derivatives of Early Transition Metal Alkoxides That Thermally Convert to Varied Ceramic-Silica Architecture Materials.

Synthesis and Characterization of Tris(trimethylsilyl)siloxide Derivatives of Early Transition Metal Alkoxides That Thermally Convert to Varied Ceramic-Silica Architecture Materials.

Inorganic chemistry (2018-07-07)
Timothy J Boyle, Jeremiah M Sears, Diana Perales, Roger E Cramer, Ping Lu, Rana O Chan, Bernadette A Hernandez-Sanchez
RESUMEN

In an effort to generate single-source precursors for the production of metal-siloxide (MSiO x) materials, the tris(trimethylsilyl)silanol (H-SST or H-OSi(SiMe3)3 (1) ligand was reacted with a series of group 4 and 5 metal alkoxides. The group 4 products were crystallographically characterized as [Ti(SST)2(OR)2] (OR = OPr i (2), OBu t (3), ONep (4)); [Ti(SST)3(OBu n)] (5); [Zr(SST)2(OBu t)2(py)] (6); [Zr(SST)3(OR)] (OR = OBu t (7), ONep, (8)); [Hf(SST)2(OBu t)2] (9); and [Hf(SST)2(ONep)2(py) n] ( n = 1 (10), n = 2 (10a)) where OPr i = OCH(CH3)2, OBu t = OC(CH3)3, OBu n = O(CH2)3CH3, ONep = OCH2C(CH3)3, py = pyridine. The crystal structures revealed varied SST substitutions for: monomeric Ti species that adopted a tetrahedral ( T-4) geometry; monomeric Zr compounds with coordination that varied from T-4 to trigonal bipyramidal ( TBPY-5); and monomeric Hf complexes isolated in a TBPY-5 geometry. For the group 5 species, the following derivatives were structurally identified as [V(SST)3(py)2] (11), [Nb(SST)3(OEt)2] (12), [Nb(O)(SST)3(py)] (13), 2[H][(Nb(μ-O)2(SST))6(μ6-O)] (14), [Nb8O10(OEt)18(SST)2·1/5Na2O] (15), [Ta(SST)(μ-OEt)(OEt)3]2 (16), and [Ta(SST)3(OEt)2] (17) where OEt = OCH2CH3. The group 5 monomeric complexes were solved in a TBPY-5 arrangement, whereas the Ta of the dinculear 16 was solved in an octahedral coordination environment. Thermal analyses of these precursors revealed a stepwise loss of ligand, which indicated their potential utility for generating the MSiO x materials. The complexes were thermally processed (350-1100 °C, 4 h, ambient atmosphere), but instead of the desired MSiO x, transmission electron microscopy analyses revealed that fractions of the group 4 and group 5 precursors had formed unusual metal oxide silica architectures.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Tris(trimethylsilyl)silanol, ≥95%