Saltar al contenido
MilliporeSigma
  • Protein Separation Coacervation with Carboxymethyl Cellulose of Different Substitution Degree: Noninteracting Behavior of Bowman-Birk Chymotrypsin Inhibitor.

Protein Separation Coacervation with Carboxymethyl Cellulose of Different Substitution Degree: Noninteracting Behavior of Bowman-Birk Chymotrypsin Inhibitor.

Journal of agricultural and food chemistry (2018-03-23)
Xingfei Li, Jie Long, Yufei Hua, Yeming Chen, Xiangzhen Kong, Caimeng Zhang
RESUMEN

We first observed that protein/polysaccharide interaction exhibited noninteracting behavior which makes Bowman-Birk chymotrypsin inhibitor (BBI) always free of complexation, being separated from another protein with similar isoelectric points, Kunitz trypsin inhibitor (KTI). Turbidity titrations showed that the electrostatic attractions were much stronger between KTI/BBI (KBi) and carboxymethyl cellulose of higher substitution degree. Unchanged chymotrypsin inhibitory activity (CIA) indicated that BBI had negligible contribution to protein recovery and trypsin inhibitory activity (TIA). Tricine-SDS-PAGE revealed that, at r = 20:1-2:1, unbound BBI was left in the supernatant when bound KTI transferred into precipitates, even if there was excess negative charge. Thus, purified KTI or BBI was achieved easily at the given conditions. The noninteracting behavior of BBI was further confirmed by ITC, where the binding enthalpy of BBI to CMC was negligible compared with the high binding affinity ( Kb) of KTI. This work will be beneficial to protein purification based on protein-polysaccharide coacervation.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Trypsin Inhibitor from Glycine max (soybean), BioUltra, lyophilized powder, ≥95% (Kunitz inhibitor, SDS-PAGE)