跳轉至內容
Merck
  • Rapid evaluation and comparison of natural products and antioxidant activity in calendula, feverfew, and German chamomile extracts.

Rapid evaluation and comparison of natural products and antioxidant activity in calendula, feverfew, and German chamomile extracts.

Journal of chromatography. A (2015-02-11)
Snezana Agatonovic-Kustrin, Davoud Babazadeh Ortakand, David W Morton, Ahmad P Yusof
摘要

The present study describes a simple high performance thin layer chromatographic (HPTLC) method for the simultaneous quantification of apigenin, chamazulene, bisabolol and the use of DPPH free radical as a post-chromatographic derivatization agent to compare the free radical scavenging activities of these components in leaf and flower head extracts from feverfew, German chamomile and marigold from the Asteraceae family. Feverfew (Tanacetum parthenium) leaves have been traditionally used in the treatment of migraine with parthenolide being the main bioactive compound. However, due to similar flowers, feverfew is sometimes mistaken for the German chamomile (Matricaria recutita). Bisabolol and chamazulene are the main components in chamomile essential oil. Marigold (Calendula officinalis) was included in the study for comparison, as it belongs to the same family. Parthenolide was found to be present in all leaf extracts but was not detected in calendula flower extract. Chamazulene and bisabolol were found to be present in higher concentrations in chamomile and Calendula flowers. Apigenin was detected and quantified only in chamomile extracts (highest concentration in flower head extracts). Antioxidant activity in sample extracts was compared by superimposing the chromatograms obtained after post-chromatographic derivatization with DPPH and post-chromatographic derivatization with anisaldehyde. It was found that extracts from chamomile flower heads and leaves have the most prominent antioxidant activity, with bisabolol and chamazulene being the most effective antioxidants.

材料
產品編號
品牌
產品描述

Sigma-Aldrich
甲醇, suitable for HPLC, ≥99.9%
Sigma-Aldrich
纯乙醇, 200 proof, for molecular biology
Sigma-Aldrich
丙酮, ACS reagent, ≥99.5%
Sigma-Aldrich
硫酸, ACS reagent, 95.0-98.0%
Sigma-Aldrich
甲醇, ACS reagent, ≥99.8%
Sigma-Aldrich
纯乙醇, 200 proof, ACS reagent, ≥99.5%
Sigma-Aldrich
乙酸乙酯, ACS reagent, ≥99.5%
Sigma-Aldrich
乙酸, glacial, ACS reagent, ≥99.7%
Sigma-Aldrich
丙酮, suitable for HPLC, ≥99.9%
Sigma-Aldrich
甲醇, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
乙酸乙酯, suitable for HPLC, ≥99.7%
Sigma-Aldrich
乙酸, glacial, ReagentPlus®, ≥99%
Sigma-Aldrich
氯仿, contains 100-200 ppm amylenes as stabilizer, ≥99.5%
Sigma-Aldrich
丙酮, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%
Sigma-Aldrich
纯乙醇, 200 proof, HPLC/spectrophotometric grade
Sigma-Aldrich
甲醇, HPLC Plus, ≥99.9%
Sigma-Aldrich
氯仿, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains amylenes as stabilizer
Sigma-Aldrich
乙酸乙酯, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%
Sigma-Aldrich
正己烷, suitable for HPLC, ≥97.0% (GC)
Sigma-Aldrich
氯仿, suitable for HPLC, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
纯乙醇, 200 proof, meets USP testing specifications
Sigma-Aldrich
正己烷, ReagentPlus®, ≥99%
Sigma-Aldrich
正己烷, suitable for HPLC, ≥95%
Sigma-Aldrich
丙酮, Laboratory Reagent, ≥99.5%
Sigma-Aldrich
氯仿, contains ethanol as stabilizer, ACS reagent, ≥99.8%
Sigma-Aldrich
2,2-联苯基-1-苦基肼基
Sigma-Aldrich
纯乙醇, 190 proof, for molecular biology
Sigma-Aldrich
硫酸, 99.999%
Sigma-Aldrich
乙酸, glacial, ≥99.99% trace metals basis
Sigma-Aldrich
正己烷, Laboratory Reagent, ≥95%