跳轉至內容
Merck
  • Taking the temperature of the interiors of magnetically heated nanoparticles.

Taking the temperature of the interiors of magnetically heated nanoparticles.

ACS nano (2014-05-02)
Juyao Dong, Jeffrey I Zink
摘要

The temperature increase inside mesoporous silica nanoparticles induced by encapsulated smaller superparamagnetic nanocrystals in an oscillating magnetic field is measured using a crystalline optical nanothermometer. The detection mechanism is based on the temperature-dependent intensity ratio of two luminescence bands in the upconversion emission spectrum of NaYF4:Yb(3+), Er(3+). A facile stepwise phase transfer method is developed to construct a dual-core mesoporous silica nanoparticle that contains both a nanoheater and a nanothermometer in its interior. The magnetically induced heating inside the nanoparticles varies with different experimental conditions, including the magnetic field induction power, the exposure time to the magnetic field, and the magnetic nanocrystal size. The temperature increase of the immediate nanoenvironment around the magnetic nanocrystals is monitored continuously during the magnetic oscillating field exposure. The interior of the nanoparticles becomes much hotter than the macroscopic solution and cools to the temperature of the ambient fluid on a time scale of seconds after the magnetic field is turned off. This continuous absolute temperature detection method offers quantitative insight into the nanoenvironment around magnetic materials and opens a path for optimizing local temperature controls for physical and biomedical applications.

材料
產品編號
品牌
產品描述

Sigma-Aldrich
氯仿, contains 100-200 ppm amylenes as stabilizer, ≥99.5%
Sigma-Aldrich
氯仿, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains amylenes as stabilizer
Sigma-Aldrich
氯仿, suitable for HPLC, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
氯仿, contains ethanol as stabilizer, ACS reagent, ≥99.8%
Sigma-Aldrich
1-十八烯, technical grade, 90%
Sigma-Aldrich
氯仿, suitable for HPLC, ≥99.8%, amylene stabilized
Sigma-Aldrich
氯仿, puriss. p.a., reag. ISO, reag. Ph. Eur., 99.0-99.4% (GC)
Sigma-Aldrich
氯仿, ReagentPlus®, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
氯仿, contains amylenes as stabilizer, ACS reagent, ≥99.8%
Sigma-Aldrich
氯仿, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
氯仿, ACS spectrophotometric grade, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
氯仿, biotech. grade, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
氯仿, contains ethanol as stabilizer, meets analytical specification of BP, 99-99.4% (GC)
Sigma-Aldrich
1-十八烯, ≥95.0% (GC)
Sigma-Aldrich
氯仿, ≥99%, PCR Reagent, contains amylenes as stabilizer
Sigma-Aldrich
氯仿, anhydrous, ≥99%, contains 0.5-1.0% ethanol as stabilizer
Supelco
氯仿, analytical standard
Supelco
氯仿, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
氯仿, anhydrous, contains amylenes as stabilizer, ≥99%
Supelco
残留溶剂-氯仿, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
氯仿, suitable for HPLC, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
氯仿, ACS reagent, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Supelco
1-十八烯, analytical standard, ≥99.0% (GC)
Sigma-Aldrich
氯仿, ACS reagent, ≥99.8%, contains amylenes as stabilizer