跳轉至內容
Merck
  • Translesion polymerase kappa-dependent DNA synthesis underlies replication fork recovery.

Translesion polymerase kappa-dependent DNA synthesis underlies replication fork recovery.

eLife (2018-11-14)
Peter Tonzi, Yandong Yin, Chelsea Wei Ting Lee, Eli Rothenberg, Tony T Huang
摘要

DNA replication stress is often defined by the slowing or stalling of replication fork progression leading to local or global DNA synthesis inhibition. Failure to resolve replication stress in a timely manner contribute toward cell cycle defects, genome instability and human disease; however, the mechanism for fork recovery remains poorly defined. Here, we show that the translesion DNA polymerase (Pol) kappa, a DinB orthologue, has a unique role in both protecting and restarting stalled replication forks under conditions of nucleotide deprivation. Importantly, Pol kappa-mediated DNA synthesis during hydroxyurea (HU)-dependent fork restart is regulated by both the Fanconi Anemia (FA) pathway and PCNA polyubiquitination. Loss of Pol kappa prevents timely rescue of stalled replication forks, leading to replication-associated genomic instability, and a p53-dependent cell cycle defect. Taken together, our results identify a previously unanticipated role for Pol kappa in promoting DNA synthesis and replication stress recovery at sites of stalled forks.

材料
產品編號
品牌
產品描述

Sigma-Aldrich
抗磷酸组蛋白H2A.X(Ser139)抗体,克隆JBW301, clone JBW301, Upstate®, from mouse
Sigma-Aldrich
羟基脲, 98%, powder
Sigma-Aldrich
5-乙炔基-2′-脱氧尿苷, 95%
Sigma-Aldrich
5,6-二氯苯并咪唑 1-β-D-核苷
Sigma-Aldrich
Mirin, ≥98% (HPLC), powder
Sigma-Aldrich
AZD-7762 hydrochloride, ≥98% (HPLC)