跳轉至內容
Merck
  • Epigenetic Regulation of RIP3 Suppresses Necroptosis and Increases Resistance to Chemotherapy in NonSmall Cell Lung Cancer.

Epigenetic Regulation of RIP3 Suppresses Necroptosis and Increases Resistance to Chemotherapy in NonSmall Cell Lung Cancer.

Translational oncology (2019-12-31)
Qiong Wang, Peipei Wang, Li Zhang, Mathewos Tessema, Lang Bai, Xiuling Xu, Qin Li, Xuelian Zheng, Bryanna Saxton, Wenshu Chen, Randy Willink, Zhiping Li, Lin Zhang, Steven A Belinsky, Xia Wang, Bin Zhou, Yong Lin
摘要

The efficacy of chemotherapeutic agents in killing cancer cells is mainly attributed to the induction of apoptosis. However, the tremendous efforts on enhancing apoptosis-related mechanisms have only moderately improved lung cancer chemotherapy, suggesting that other cell death mechanisms such as necroptosis could be involved. In this study, we investigated the role of the necroptosis pathway in the responsiveness of nonsmall cell lung cancer (NSCLC) to chemotherapy. In vitro cell culture and in vivo xenograft tumor therapy models and clinical sample studies are combined in studying the role of necroptosis in chemotherapy and mechanism of necroptosis suppression involving RIP3 expression regulation. While chemotherapeutic drugs were able to induce necroptotic cell death, this pathway was suppressed in lung cancer cells at least partly through downregulation of RIP3 expression. Ectopic RIP3 expression significantly sensitized lung cancer cells to the cytotoxicity of anticancer drugs such as cisplatin, etoposide, vincristine, and adriamycin. In addition, RIP3 suppression was associated with RIP3 promoter methylation, and demethylation partly restored RIP3 expression and increased chemotherapeutic-induced necroptotic cell death. In a xenograft tumor therapy model, ectopic RIP3 expression significantly sensitized anticancer activity of cisplatin in vivo. Furthermore, lower RIP3 expression was associated with worse chemotherapy response in NSCLC patients. Our results indicate that the necroptosis pathway is suppressed in lung cancer through RIP3 promoter methylation, and reactivating this pathway should be exploited for improving lung cancer chemotherapy.

材料
產品編號
品牌
產品描述

Sigma-Aldrich
阿霉素 盐酸盐, 98.0-102.0% (HPLC)
Roche
原位细胞死亡检测试剂盒,TMR红, sufficient for ≤50 tests
Sigma-Aldrich
依托泊苷, synthetic, 95.0-105.0%, powder
Sigma-Aldrich
腺苷 5'-二磷酸核糖 钠盐, ≥93%
Sigma-Aldrich
二氯化二胺(II), ≥99.9% trace metals basis
Sigma-Aldrich
抗-MLKL抗体,克隆3H1, clone 3H1, from rat
Sigma-Aldrich
长春新碱 硫酸酯, meets USP testing specifications
Sigma-Aldrich
Anti-phospho-MLKL (Ser358) Antibody Set, from rabbit, purified by affinity chromatography