跳轉至內容
Merck
全部照片(1)

重要文件

05184

Supelco

氧化铝

for the determination of hydrocarbons

同義詞:

氧化铝

登入查看組織和合約定價


About This Item

線性公式:
Al2O3
CAS號碼:
分子量::
101.96
EC號碼:
MDL號碼:
分類程式碼代碼:
41115711
PubChem物質ID:
NACRES:
NB.21

形狀

powder

品質等級

品質

for the determination of hydrocarbons

技術

thin layer chromatography (TLC): suitable

粒徑

0.05-0.15 mm

pH值

7.0±1.0

mp

2040 °C (lit.)

SMILES 字串

O=[Al]O[Al]=O

InChI

1S/2Al.3O

InChI 密鑰

TWNQGVIAIRXVLR-UHFFFAOYSA-N

尋找類似的產品? 前往 產品比較指南

相關產品

儲存類別代碼

13 - Non Combustible Solids

水污染物質分類(WGK)

nwg

閃點(°F)

Not applicable

閃點(°C)

Not applicable

個人防護裝備

Eyeshields, Gloves, type N95 (US)


從最近期的版本中選擇一個:

分析證明 (COA)

Lot/Batch Number

未看到正確版本?

如果您需要一個特定的版本,您可以透過批號來尋找特定憑證。

已經擁有該產品?

您可以在文件庫中找到最近購買的產品相關文件。

存取文件庫

Chien-Chih Lin et al.
Nanoscale, 5(17), 8090-8097 (2013-07-25)
We demonstrated a promising route for enhancing temperature sensitivity, improving saturation voltage, and reducing power consumption of the MOS(p) tunneling temperature sensors by introducing ultrathin Al2O3 into the dielectric stacks. Detailed illustrations of the working mechanism and device concept are
Jaakko Akola et al.
Proceedings of the National Academy of Sciences of the United States of America, 110(25), 10129-10134 (2013-06-01)
Glass formation in the CaO-Al2O3 system represents an important phenomenon because it does not contain typical network-forming cations. We have produced structural models of CaO-Al2O3 glasses using combined density functional theory-reverse Monte Carlo simulations and obtained structures that reproduce experiments
Colin J Ingham et al.
Biotechnology advances, 30(5), 1089-1099 (2011-08-23)
Porous aluminum oxide (PAO) is a ceramic formed by an anodization process of pure aluminum that enables the controllable assembly of exceptionally dense and regular nanopores in a planar membrane. As a consequence, PAO has a high porosity, nanopores with
Nemanja Danilovic et al.
Angewandte Chemie (International ed. in English), 53(51), 14016-14021 (2014-10-10)
The methods used to improve catalytic activity are well-established, however elucidating the factors that simultaneously control activity and stability is still lacking, especially for oxygen evolution reaction (OER) catalysts. Here, by studying fundamental links between the activity and stability of
Yi Tian et al.
Journal of the American Chemical Society, 136(36), 12784-12793 (2014-08-19)
Organic neutral radicals have long fascinated chemists with a fundamental understanding of structure-reactivity relationships in organic reactions and with applications as new functional materials. However, the elusive nature of these radicals makes the synthesis, isolation, and characterization very challenging. In

我們的科學家團隊在所有研究領域都有豐富的經驗,包括生命科學、材料科學、化學合成、色譜、分析等.

聯絡技術服務