推薦產品
一般說明
NanoFabTx™ Microfluidic - micro device kit is designed to work with the NanoFabTx™ - micro reagent kits like (Cat. No. 912212) for the synthesis of 10-30 μm particles. The device kit includes a comprehensive protocol, pre-assembled microfluidic chip manifold, tubing, and required accessories and is compatible with either the Dolomite microfluidics system or a standard syringe pump (compatible microfluidics system or syringe pump required separately).
應用
NanoFabTx™ Microfluidic - micro device kit in combination with the NanoFabTx™ - micro reagent kits (Cat. No. 912212) can be used to create drug-encapsulating polymeric microparticles 10-30 μm in size. Because of the adjustable flow rate, small reaction window, and adjustable concentrations, microfluidic-based synthesis is a powerful tool for fabricating size-controlled particles to encapsulate drugs, small molecules, mRNA, DNA, and proteins. The chip geometries and flow parameters enable facile, scalable synthesis of monodispersed particles with consistent size and drug loading to facilitate rapid formulation screening.
特點和優勢
- Simplifies polymer chemistry of microfluidic formulation development for enhancing drug bioavailability
- Accelerates optimization of drug encapsulation and loading efficiency in microparticles
- Provides step-by-step microfluidic-based protocols developed and tested by our formulation scientists
- Minimizes waste of expensive reagents
法律資訊
NANOFABTX is a trademark of Sigma-Aldrich Co. LLC
相關產品
產品號碼
描述
訂價
Journal of nanobiotechnology, 16(1), 12-12 (2018-02-13)
The process of optimization and fabrication of nanoparticle synthesis for preclinical studies can be challenging and time consuming. Traditional small scale laboratory synthesis techniques suffer from batch to batch variability. Additionally, the parameters used in the original formulation must be
Advanced drug delivery reviews, 128, 101-114 (2017-12-27)
Microfluidic chips allow the rapid production of a library of nanoparticles (NPs) with distinct properties by changing the precursors and the flow rates, significantly decreasing the time for screening optimal formulation as carriers for drug delivery compared to conventional methods.
Genes, 9(2) (2018-02-22)
Microfluidic devices present unique advantages for the development of efficient drug carrier particles, cell-free protein synthesis systems, and rapid techniques for direct drug screening. Compared to bulk methods, by efficiently controlling the geometries of the fabricated chip and the flow
文章
Professor Robert K. Prud’homme introduces flash nanoprecipitation (FNP) for nanoparticle fabrication, which is a scalable, rapid mixing process for nanoparticle formulations.
我們的科學家團隊在所有研究領域都有豐富的經驗,包括生命科學、材料科學、化學合成、色譜、分析等.
聯絡技術服務