推薦產品
形狀
powder
成份
Carbon, >80 wt. %
Nitrogen, >4 wt. %
顏色
black
尋找類似的產品? 前往 產品比較指南
一般說明
This highly exfoliated nitrogen-doped graphene exhibits high electrochemical activity towards oxygen reduction in alkali medium providing an affordable industrial alternative to currently used noble metal-based catalysts (i.e. Pt, Pd). This nitrogen-doped graphene shows high onset potential (ca. 940 mV vs. RHE) carrying out the electrochemical oxygen reduction reaction (ORR) towards a 4 electron pathway avoiding the production of H2O2. Furthermore, this material is reported to be more stable (to MeOH) and durable (CO tolerance) than Pt-based catalysts.This highly exfoliated nitrogen-doped graphene exhibits high electrochemical activity towards oxygen reduction in alkali medium providing an affordable industrial alternative to currently used noble metal-based catalysts (i.e. Pt, Pd). This nitrogen-doped graphene shows high onset potential (ca. 940 mV vs. RHE) carrying out the electrochemical oxygen reduction reaction (ORR) towards a 4 electron pathway avoiding the production of H2O2. Furthermore, this material is reported to be more stable (to MeOH) and durable (CO tolerance) than Pt-based catalysts.
物理性質
Electrocatalytic oxygen reduction reaction (ORR) onset potential: >-0.1 V (0.1 M KOH vs Ag/AgCl).
儲存類別代碼
11 - Combustible Solids
水污染物質分類(WGK)
WGK 3
閃點(°F)
Not applicable
閃點(°C)
Not applicable
客戶也查看了
Facile synthesis of mesoporous nitrogen-dopedgraphene: An efficient methanol?tolerantcathodiccatalystfor oxygen reductionreaction.
Nano Energy, 3, 55-63 (2014)
Physical chemistry chemical physics : PCCP, 16(3), 1060-1066 (2013-11-30)
Chemical doping of nitrogen into graphene can significantly enhance the reversible capacity and cyclic stability of the graphene-based lithium ion battery (LIB) anodes, and first principles calculations based on density functional theory suggested that pyridinic-N shows stronger binding with Li
Scientific reports, 5, 14564-14564 (2015-09-29)
Understanding the modification of the graphene's electronic structure upon doping is crucial for enlarging its potential applications. We present a study of nitrogen-doped graphene samples on SiC(000) combining angle-resolved photoelectron spectroscopy, scanning tunneling microscopy and spectroscopy and X-ray photoelectron spectroscopy
我們的科學家團隊在所有研究領域都有豐富的經驗,包括生命科學、材料科學、化學合成、色譜、分析等.
聯絡技術服務