跳轉至內容
Merck
全部照片(1)

Key Documents

637262

Sigma-Aldrich

钛 (IV) 氧化物,金红石型

nanopowder, <100 nm particle size, 99.5% trace metals basis

同義詞:

二氧化钛

登入查看組織和合約定價


About This Item

線性公式:
TiO2
CAS號碼:
分子量::
79.87
EC號碼:
MDL號碼:
分類程式碼代碼:
12352302
PubChem物質ID:
NACRES:
NA.23

品質等級

化驗

99.5% trace metals basis

形狀

nanopowder

直徑×長度

~10 nm × 40 nm

表面積

50 m2/g

粒徑

<100 nm

密度

4.17 g/mL at 25 °C (lit.)

體積密度

0.06‑0.10 g/mL

應用

battery manufacturing

SMILES 字串

O=[Ti]=O

InChI

1S/2O.Ti

InChI 密鑰

GWEVSGVZZGPLCZ-UHFFFAOYSA-N

尋找類似的產品? 前往 產品比較指南

一般說明

金红石型二氧化钛 (IV),也称二氧化钛,是一种颗粒尺寸小于100纳米的细小粉末。这种钛具有金红石晶体结构,也是一种具有高折射率的、不透明的白色结晶固体。它被广泛用作涂料、塑料、纸张和化妆品中的色素。金红石型二氧化钛纳米粉末具有高表面积,这使其在各种应用中反应活性更高、更有效。它耐热并且耐化学品,适用于高温和腐蚀性环境。

應用

  • A study on titanium dioxide nanoparticles synthesized from titanium isopropoxide under SILAR-induced gel method: Transition from anatase to rutile structure: 研究用连续离子层吸附反应(SILAR)诱导的凝胶法进行二氧化钛纳米粒子的合成和相变(从锐钛矿型到金红石型)(AC Nkele et al., 2020)。
  • Synthesis of rutile TiO2 nanostructures by single step hydrothermal route and its characterization: 描述一步水热法合成金红石型TiO2纳米结构并表征(SB Wategaonkar et al., 2020)。
  • Monolayer Intermixed Oxide Surfaces: Fe, Ni, Cr, and V Oxides on Rutile TiO2(011): 研究金红石型TiO2(011)上的混合性氧化物层形成及其结构(S Halpegamage et al., 2016)。
  • Mechanism, thermodynamics and kinetics of rutile leaching process by sulfuric acid reactions: 研究金红石在硫酸中的溶解,重点是反应过程中的热力学和动力学(AV Dubenko et al., 2020)。
  • Kinetics of anatase transition to rutile TiO2 from titanium dioxide precursor powders synthesized by a sol-gel process: 研究溶胶-凝胶法合成的二氧化钛前驱粉末从锐钛矿向金红石的相变动力学(CL Wang et al., 2016)。

特點和優勢

具有提高的光催化活性。

其他說明

可能含有最多至 5 重量% 的二氧化硅作为表面涂层。

含少量锐钛矿。

儲存類別代碼

13 - Non Combustible Solids

水污染物質分類(WGK)

nwg

閃點(°F)

Not applicable

閃點(°C)

Not applicable

個人防護裝備

Eyeshields, Gloves, type N95 (US)


從最近期的版本中選擇一個:

分析證明 (COA)

Lot/Batch Number

未看到正確版本?

如果您需要一個特定的版本,您可以透過批號來尋找特定憑證。

已經擁有該產品?

您可以在文件庫中找到最近購買的產品相關文件。

存取文件庫

Suxin Gui et al.
Journal of agricultural and food chemistry, 61(37), 8959-8968 (2013-08-24)
TiO₂ nanoparticles (NPs) are used in the food industry but have potential toxic effects in humans and animals. TiO₂ NPs impair renal function and cause oxidative stress and renal inflammation in mice, associated with inhibition of nuclear factor erythroid-2-related factor
Susan C Tilton et al.
Nanotoxicology, 8(5), 533-548 (2013-05-11)
The growing use of engineered nanoparticles (NPs) in commercial and medical applications raises the urgent need for tools that can predict NP toxicity. Global transcriptome and proteome analyses were conducted on three human cell types, exposed to two high aspect
Alessia D'Agata et al.
Nanotoxicology, 8(5), 549-558 (2013-05-24)
Marine bivalves (Mytilus galloprovincialis) were exposed to titanium dioxide (10 mg L(-1)) either as engineered nanoparticles (nTiO2; fresh, or aged under simulated sunlight for 7 days) or the bulk equivalent. Inductively coupled plasma-optical emission spectrometry analyses of mussel tissues showed
Roberta Tassinari et al.
Nanotoxicology, 8(6), 654-662 (2013-07-10)
The study explored possible reproductive and endocrine effects of short-term (5 days) oral exposure to anatase TiO2 nanoparticles (0, 1, 2 mg/kg body weight per day) in rat. Nanoparticles were characterised by scanning electron microscopy (SEM) and transmission electron microscopy
D Minetto et al.
Environment international, 66, 18-27 (2014-02-11)
The innovative properties of nanomaterials make them suitable for various applications in many fields. In particular, TiO2 nanoparticles (nTiO2) are widely used in paints, in cosmetics and in sunscreens that are products accessible to the mass market. Despite the great

文章

Dye-sensitized solar cells directly convert sunlight to electricity

Over the last decade, dye-sensitized solar cells (DSSCs) have attracted much attention because these unconventional solar cells exhibit high performance and have the potential for low-cost production.

Over the last decade, dye-sensitized solar cells (DSSCs) have attracted much attention because these unconventional solar cells exhibit high performance and have the potential for low-cost production.

One of the more traditional photovoltaic devices, single crystalline silicon solar cells were invented more than 50 years ago, currently make up 94% of the market. Single crystalline silicon solar cells operate on the principle of p-n junctions formed by joining p-type and n-type semiconductors.

查看全部

我們的科學家團隊在所有研究領域都有豐富的經驗,包括生命科學、材料科學、化學合成、色譜、分析等.

聯絡技術服務