Skip to Content
Merck
All Photos(1)

Key Documents

295906

Sigma-Aldrich

Poly(ethylene glycol)

average Mn 2,050, chips

Synonym(s):

Polyethylene glycol, PEG

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
H(OCH2CH2)nOH
CAS Number:
MDL number:
UNSPSC Code:
12352104
PubChem Substance ID:
NACRES:
NA.23

form

chips

Quality Level

mol wt

average Mn 2,050

mp

52-54 °C

Ω-end

hydroxyl

α-end

hydroxyl

SMILES string

C(CO)O

InChI

1S/C2H6O2/c3-1-2-4/h3-4H,1-2H2

InChI key

LYCAIKOWRPUZTN-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Application

  • Cytotoxicity Study of Polyethylene Glycol Derivatives: Evaluates the cytotoxic effects of various PEG derivatives, important for chemists in pharmaceutical development and safety assessment (Liu et al., 2017).
  • ExtraPEG: A Polyethylene Glycol-Based Method for Enrichment of Extracellular Vesicles: Introduces a PEG-based method for isolating exosomes, useful for researchers in biomedical and clinical sciences (Rider et al., 2016).

Other Notes

Molecular weight: Mn 1,900-2,200

Storage Class Code

11 - Combustible Solids

WGK

WGK 1

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Chenlu Zhang et al.
PloS one, 12(9), e0184730-e0184730 (2017-09-09)
The economic production of cellulosic biofuel requires efficient and full utilization of all abundant carbohydrates naturally released from plant biomass by enzyme cocktails. Recently, we reconstituted the Neurospora crassa xylodextrin transport and consumption system in Saccharomyces cerevisiae, enabling growth of
Paras R Patel et al.
Journal of neural engineering, 12(4), 046009-046009 (2015-06-03)
Single carbon fiber electrodes (d = 8.4 μm) insulated with parylene-c and functionalized with pTS have been shown to record single unit activity but manual implantation of these devices with forceps can be difficult. Without an improvement in the insertion
Idalis Villanueva et al.
Acta biomaterialia, 5(8), 2832-2846 (2009-06-11)
The pericellular matrix (PCM) surrounding chondrocytes is thought to play an important role in transmitting biochemical and biomechanical signals to the cells, which regulates many cellular functions including tissue homeostasis. To better understand chondrocytes interactions with their PCM, three-dimensional poly(ethylene
Mark A Rice et al.
Acta biomaterialia, 5(1), 152-161 (2008-09-17)
Ultrasound has potential as a non-destructive analytical technique to provide real-time online assessments of matrix evolution in cell-hydrogel constructs used in tissue engineering. In these studies, chondrocytes were encapsulated in poly(ethylene glycol) hydrogels, and gel degradation was manipulated to provide
D D Smyth et al.
Cardiovascular drugs and therapy, 4(1), 297-300 (1990-02-01)
Previous studies have demonstrated that Separan AP-30, a drag-reducing polymer, significantly decreased the formation of atherosclerotic plaques in rabbits fed a high-cholesterol diet. Furthermore, Separan AP-273, a polymer similar to but longer than Separan AP-30, markedly increased cardiac output in

Articles

Click chemistry, and the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) in particular, is a powerful new synthetic tool in polymer chemistry and material science.

Progress in biotechnology fields such as tissue engineering and drug delivery is accompanied by an increasing demand for diverse functional biomaterials. One class of biomaterials that has been the subject of intense research interest is hydrogels, because they closely mimic the natural environment of cells, both chemically and physically and therefore can be used as support to grow cells. This article specifically discusses poly(ethylene glycol) (PEG) hydrogels, which are good for biological applications because they do not generally elicit an immune response. PEGs offer a readily available, easy to modify polymer for widespread use in hydrogel fabrication, including 2D and 3D scaffold for tissue culture. The degradable linkages also enable a variety of applications for release of therapeutic agents.

Devising biomaterial scaffolds that are capable of recapitulating critical aspects of the complex extracellular nature of living tissues in a threedimensional (3D) fashion is a challenging requirement in the field of tissue engineering and regenerative medicine.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service