Skip to Content
Merck
All Photos(4)

Key Documents

237965

Sigma-Aldrich

Lithium fluoride

greener alternative

powder, -300 mesh

Synonym(s):

Fluorolithium

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
LiF
CAS Number:
Molecular Weight:
25.94
EC Number:
MDL number:
UNSPSC Code:
12352302
PubChem Substance ID:

form

powder

Quality Level

greener alternative product characteristics

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

particle size

-300 mesh

mp

845 °C (lit.)

density

2.64 g/mL at 25 °C (lit.)

greener alternative category

SMILES string

[Li+].[F-]

InChI

1S/FH.Li/h1H;/q;+1/p-1

InChI key

PQXKHYXIUOZZFA-UHFFFAOYSA-M

Looking for similar products? Visit Product Comparison Guide

General description

We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced for energy efficiency. Click here for more information.

Application

Lithium fluoride (LiF) can be used as a sintering aid that facilitates the etching of spinel particles for the degradation of magnesium aluminum spinel. It can be used in the preparation of carbon-iron LiF nanocomposite based electrode materials for lithium-ion batteries. It can also form thin interlayers on the counter electrode to enhance the fill factor and stabilize the high open-circuit voltages for polymer solar cells.

Pictograms

Skull and crossbones

Signal Word

Danger

Hazard Statements

Hazard Classifications

Acute Tox. 3 Oral - Eye Irrit. 2 - Skin Irrit. 2 - STOT SE 3

Target Organs

Respiratory system

Supplementary Hazards

Storage Class Code

6.1D - Non-combustible, acute toxic Cat.3 / toxic hazardous materials or hazardous materials causing chronic effects

WGK

WGK 2

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Effect of LiFmetal electrodes on the performance of plastic solar cells
Brabec CJ, et al.
Applied Physics Letters, 80(7), 1288-1290 (2002)
Fluorescent detection of single tracks of alpha particles using lithium fluoride crystals
Bilski P and Marczewska B
Nuclear Instruments & Methods in Physics Research. Section B, Beam Interactions With Materials and Atoms, 392, 41-45 (2017)
A ferrocene-based carbon-iron lithium fluoride nanocomposite as a stable electrode material in lithium batteries
Prakash R, et al.
Journal of Materials Chemistry, 20(10), 1871-1876 (2010)
R Takam et al.
Radiation protection dosimetry, 150(1), 22-33 (2011-08-30)
(6)LiF:Mg,Cu,P and (7)LiF:Mg,Cu,P glass-rod thermoluminescent dosemeters (TLDs) were used for measurements of out-of-field photon and neutron doses produced by Varian iX linear accelerator. Both TLDs were calibrated using 18-MV X-ray beam to investigate their dose-response sensitivity and linearity. CR-39 etch-track
Thorsten Grünheid et al.
American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics, 141(4), 436-443 (2012-04-03)
Cone-beam computed tomography (CBCT) has become a routine imaging modality for many orthodontic clinics. However, questions remain about the amount of radiation patients are exposed to during the scans. This study determined the amounts of radiation potentially absorbed by a

Articles

Professor Gogotsi and Dr. Shuck introduce MXenes: a promising family of two-dimensional materials with a unique combination of high conductivity, hydrophilicity, and extensive tunability.

Research and development of solid-state lithium fast-ion conductors is crucial because they can be potentially used as solid electrolytes in all-solid-state batteries, which may solve the safety and energy-density related issues of conventional lithium-ion batteries that use liquid (farmable organic) electrolytes.

Lithium-Ion Battery Performance: Dependence on Material Synthesis and Post‑Treatment Methods

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service