跳转至内容
Merck
  • Using surface segregation to design stable Ru-Ir oxides for the oxygen evolution reaction in acidic environments.

Using surface segregation to design stable Ru-Ir oxides for the oxygen evolution reaction in acidic environments.

Angewandte Chemie (International ed. in English) (2014-10-10)
Nemanja Danilovic, Ramachandran Subbaraman, Kee Chul Chang, Seo Hyoung Chang, Yijin Kang, Joshua Snyder, Arvydas Paul Paulikas, Dusan Strmcnik, Yong Tae Kim, Deborah Myers, Vojislav R Stamenkovic, Nenad M Markovic
摘要

The methods used to improve catalytic activity are well-established, however elucidating the factors that simultaneously control activity and stability is still lacking, especially for oxygen evolution reaction (OER) catalysts. Here, by studying fundamental links between the activity and stability of well-characterized monometallic and bimetallic oxides, we found that there is generally an inverse relationship between activity and stability. To overcome this limitation, we developed a new synthesis strategy that is based on tuning the near-surface composition of Ru and Ir elements by surface segregation, thereby resulting in the formation of a nanosegregated domain that balances the stability and activity of surface atoms. We demonstrate that a Ru0.5Ir0.5 alloy synthesized by using this method exhibits four-times higher stability than the best Ru-Ir oxygen evolution reaction materials, while still preserving the same activity.

材料
货号
品牌
产品描述

Sigma-Aldrich
氧化铝, activated, basic, Brockmann I
Sigma-Aldrich
氧化铝, activated, neutral, Brockmann I
Sigma-Aldrich
氧化铝, powder, 99.99% trace metals basis
Sigma-Aldrich
氧化铝, activated, acidic, Brockmann I
Sigma-Aldrich
氧化铝, nanoparticles, <50 nm particle size (DLS), 20 wt. % in isopropanol
Sigma-Aldrich
氧化铝, Corundum, α-phase, -100 mesh
Sigma-Aldrich
氧化铝, pellets, 3 mm
Sigma-Aldrich
氧化铝, fused, powder, primarily α-phase, -325 mesh
Sigma-Aldrich
氧化铝, nanopowder, 13 nm primary particle size (TEM), 99.8% trace metals basis
Sigma-Aldrich
氧化铝, 99.997% trace metals basis
Sigma-Aldrich
氧化铝, Type WN-6, Neutral, Activity Grade Super I
Sigma-Aldrich
氧化铝, pore size 58 Å, ~150 mesh
Sigma-Aldrich
氧化铝, nanoparticles, 30-60 nm particle size (TEM), 20 wt. % in H2O
Sigma-Aldrich
氧化铝, fused, powder, primarily α-phase, 100-200 mesh
Sigma-Aldrich
氧化铝, single crystal substrate, <0001>
Sigma-Aldrich
氧化铝, nanowires, diam. × L 2-6 nm × 200-400 nm
Sigma-Aldrich
介孔氧化铝, MSU-X (wormhole), average pore size 3.8 nm
Sigma-Aldrich
氧化铝, activated, neutral, Brockmann I, free-flowing, Redi-Dri
Sigma-Aldrich
氧化铝, activated, acidic, Brockmann I, free-flowing, Redi-Dri
Supelco
氧化铝, activated, neutral, Brockmann Activity I
Supelco
氧化铝, for the determination of hydrocarbons