跳转至内容
Merck
  • Optimization of a preparative multimodal ion exchange step for purification of a potential malaria vaccine.

Optimization of a preparative multimodal ion exchange step for purification of a potential malaria vaccine.

Journal of chromatography. A (2014-10-02)
Jessica Paul, Sonja Jensen, Arthur Dukart, Gesine Cornelissen
摘要

In 2000 the implementation of quality by design (QbD) was introduced by the Food and Drug Administration (FDA) and described in the ICH Q8, Q9 and Q10 guidelines. Since that time, systematic optimization strategies for purification of biopharmaceuticals have gained a more important role in industrial process development. In this investigation, the optimization strategy was carried out by adopting design of experiments (DoE) in small scale experiments. A combination method comprising a desalting and a multimodal ion exchange step was used for the experimental runs via the chromatographic system ÄKTA™ avant. The multimodal resin Capto™ adhere was investigated as an alternative to conventional ion exchange and hydrophobic interaction resins for the intermediate purification of the potential malaria vaccine D1M1. The ligands, used in multimodal chromatography, interact with the target molecule in different ways. The multimodal functionality includes the binding of proteins in spite of the ionic strength of the loading material. The target protein binds at specific salt conditions and can be eluted by a step gradient decreasing the pH value and reducing the ionic strength. It is possible to achieve a maximized purity and recovery of the product because degradation products and other contaminants do not bind at specific salt concentrations at which the product still binds to the ligands.

材料
货号
品牌
产品描述

Sigma-Aldrich
乙酸, glacial, ACS reagent, ≥99.7%
Sigma-Aldrich
氢氧化钠, ACS reagent, ≥97.0%, pellets
Sigma-Aldrich
乙酸, glacial, ReagentPlus®, ≥99%
Sigma-Aldrich
氢氧化钠, reagent grade, ≥98%, pellets (anhydrous)
Sigma-Aldrich
2 mol/L 氢氧化钠溶液 溶液, 50% in H2O
Sigma-Aldrich
2 mol/L 氢氧化钠溶液 溶液, BioUltra, for molecular biology, 10 M in H2O
Sigma-Aldrich
氯化钠, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
乙酸, glacial, ≥99.99% trace metals basis
Sigma-Aldrich
乙酸, glacial, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8%
Sigma-Aldrich
2 mol/L 氢氧化钠溶液 溶液, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
氢氧化钠, BioXtra, ≥98% (acidimetric), pellets (anhydrous)
Sigma-Aldrich
氢氧化钠, puriss., meets analytical specification of Ph. Eur., BP, NF, E524, 98-100.5%, pellets
Sigma-Aldrich
氯化钠 溶液, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
氯化钠 溶液, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
乙酸 溶液, suitable for HPLC
Sigma-Aldrich
氯化钠, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
乙酸, glacial, puriss., meets analytical specification of Ph. Eur., BP, USP, FCC, 99.8-100.5%
Sigma-Aldrich
氢氧化钠, reagent grade, 97%, powder
Sigma-Aldrich
氢氧化钠, pellets, semiconductor grade, 99.99% trace metals basis
Sigma-Aldrich
氢氧化钠, puriss. p.a., ACS reagent, reag. Ph. Eur., K ≤0.02%, ≥98%, pellets
SAFC
氯化钠 溶液, 5 M
Sigma-Aldrich
2 mol/L 氢氧化钠溶液 溶液, 5.0 M
Sigma-Aldrich
氯化钠 溶液, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
氢氧化钠, beads, 16-60 mesh, reagent grade, 97%
Sigma-Aldrich
氢氧化钠, puriss. p.a., ACS reagent, K ≤0.02%, ≥98.0% (T), pellets
Sigma-Aldrich
氯化钠, 99.999% trace metals basis
Sigma-Aldrich
乙酸, for luminescence, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
氯化钠, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
氢氧化钠, reagent grade, 97%, flakes
USP
冰醋酸, United States Pharmacopeia (USP) Reference Standard