跳转至内容
Merck
  • Prolonged expression of an anti-HIV-1 gp120 minibody to the female rhesus macaque lower genital tract by AAV gene transfer.

Prolonged expression of an anti-HIV-1 gp120 minibody to the female rhesus macaque lower genital tract by AAV gene transfer.

Gene therapy (2014-06-27)
U M Abdel-Motal, C Harbison, T Han, J Pudney, D J Anderson, Q Zhu, S Westmoreland, W A Marasco
摘要

Topical microbicides are a leading strategy for prevention of HIV mucosal infection to women; however, numerous pharmacokinetic limitations associated with coitally related dosing strategy have contributed to their limited success. Here we test the hypothesis that adeno-associated virus (AAV) mediated delivery of the b12 human anti-HIV-1 gp120 minibody gene to the lower genital tract of female rhesus macaques (Rh) can provide prolonged expression of b12 minibodies in the cervical-vaginal secretions. Gene transfer studies demonstrated that, of various green fluorescent protein (GFP)-expressing AAV serotypes, AAV-6 most efficiently transduced freshly immortalized and primary genital epithelial cells (PGECs) of female Rh in vitro. In addition, AAV-6-b12 minibody transduction of Rh PGECs led to inhibition of SHIV162p4 transmigration and virus infectivity in vitro. AAV-6-GFP could also successfully transduce vaginal epithelial cells of Rh when applied intravaginally, including p63+ epithelial stem cells. Moreover, intravaginal application of AAV-6-b12 to female Rh resulted in prolonged minibody detection in their vaginal secretions throughout the 79-day study period. These data provide proof of principle that AAV-6-mediated delivery of anti-HIV broadly neutralizing antibody (BnAb) genes to the lower genital tract of female Rh results in persistent minibody detection for several months. This strategy offers promise that an anti-HIV-1 genetic microbicide strategy may be possible in which topical application of AAV vector, with periodic reapplication as needed, may provide sustained local BnAb expression and protection.

材料
货号
品牌
产品描述

Sigma-Aldrich
二甲基亚砜, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
二甲基亚砜, ACS reagent, ≥99.9%
Sigma-Aldrich
二甲基亚砜, for molecular biology
Sigma-Aldrich
二甲基亚砜, suitable for HPLC, ≥99.7%
Sigma-Aldrich
二甲基亚砜, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
二甲基亚砜, ReagentPlus®, ≥99.5%
Sigma-Aldrich
2-甲基丁烷, ReagentPlus®, ≥99%
Sigma-Aldrich
二甲基亚砜, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
二甲基亚砜, puriss. p.a., ACS reagent, ≥99.9% (GC)
Sigma-Aldrich
2-甲基丁烷, suitable for HPLC, ≥99.5%
Sigma-Aldrich
二甲基亚砜, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
2-甲基丁烷, ReagentPlus®, ≥99%
Sigma-Aldrich
二甲基亚砜, PCR Reagent
Sigma-Aldrich
二甲基亚砜, puriss. p.a., dried, ≤0.02% water
Sigma-Aldrich
二甲基亚砜, anhydrous, ≥99.9%
USP
二甲基亚砜, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
2-甲基丁烷, puriss. p.a., ≥99.5% (GC)
Sigma-Aldrich
2-甲基丁烷, anhydrous, ≥99%
Sigma-Aldrich
二甲基亚砜, meets EP testing specifications, meets USP testing specifications
Supelco
二甲基亚砜, analytical standard
Sigma-Aldrich
二甲基亚砜, Vetec, reagent grade, 99%
Supelco
2-甲基丁烷, analytical standard
Supelco
二甲基亚砜, for inorganic trace analysis, ≥99.99995% (metals basis)
二甲基亚砜, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Anti-tp63 antibody produced in rabbit, affinity isolated antibody, buffered aqueous solution