跳转至内容
Merck
  • Extracellular matrix anisotropy is determined by TFAP2C-dependent regulation of cell collisions.

Extracellular matrix anisotropy is determined by TFAP2C-dependent regulation of cell collisions.

Nature materials (2019-10-30)
Danielle Park, Esther Wershof, Stefan Boeing, Anna Labernadie, Robert P Jenkins, Samantha George, Xavier Trepat, Paul A Bates, Erik Sahai
摘要

The isotropic or anisotropic organization of biological extracellular matrices has important consequences for tissue function. We study emergent anisotropy using fibroblasts that generate varying degrees of matrix alignment from uniform starting conditions. This reveals that the early migratory paths of fibroblasts are correlated with subsequent matrix organization. Combined experimentation and adaptation of Vicsek modelling demonstrates that the reorientation of cells relative to each other following collision plays a role in generating matrix anisotropy. We term this behaviour 'cell collision guidance'. The transcription factor TFAP2C regulates cell collision guidance in part by controlling the expression of RND3. RND3 localizes to cell-cell collision zones where it downregulates actomyosin activity. Cell collision guidance fails without this mechanism in place, leading to isotropic matrix generation. The cross-referencing of alignment and TFAP2C gene expression signatures against existing datasets enables the identification and validation of several classes of pharmacological agents that disrupt matrix anisotropy.

材料
货号
品牌
产品描述

Sigma-Aldrich
抗-肌动蛋白, α-平滑肌- Cy3抗体,小鼠单克隆, clone 1A4, purified from hybridoma cell culture
Sigma-Aldrich
抗-纤连蛋白 兔抗, affinity isolated antibody, buffered aqueous solution
Sigma-Aldrich
波形蛋白单克隆抗体 小鼠抗, clone LN-6, ascites fluid
Sigma-Aldrich
单克隆抗 β-微管蛋白 I 小鼠抗, clone SAP.4G5, ascites fluid
Sigma-Aldrich
Phalloidin–Atto 633, suitable for fluorescence, ≥90% (HPLC)