跳转至内容
Merck

SML2306

Sigma-Aldrich

CTEP

≥98% (HPLC)

别名:

2-Chloro-4-((2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1H-imidazol-4-yl)ethynyl)pyridine, 2-Chloro-4-[2-[2,5-dimethyl-1-[4-(trifluoromethoxy)phenyl]-1H-imidazol-4-yl]ethynyl]pyridine, RO4956371

登录查看公司和协议定价


About This Item

经验公式(希尔记法):
C19H13ClF3N3O
分子量:
391.77
MDL號碼:
分類程式碼代碼:
12352200
NACRES:
NA.77

化驗

≥98% (HPLC)

形狀

powder

顏色

white to beige

溶解度

DMSO: 2 mg/mL, clear

儲存溫度

2-8°C

SMILES 字串

CC1=C(C#CC2=CC(Cl)=NC=C2)N=C(C)N1C3=CC=C(OC(F)(F)F)C=C3

InChI

1S/C19H13ClF3N3O/c1-12-17(8-3-14-9-10-24-18(20)11-14)25-13(2)26(12)15-4-6-16(7-5-15)27-19(21,22)23/h4-7,9-11H,1-2H3

InChI 密鑰

GOHCTCOGYKAJLZ-UHFFFAOYSA-N

生化/生理作用

CTEP (RO4956371) may be used as a therapeutic to reduce hippocampal long-term depression, protein synthesis, and audiogenic seizures in the fragile X mental retardation 1 (Fmr1) knockout mouse.
CTEP is a high-affinity, orally active, potent and selective metabotropic glutamate receptor 5 (mGlu5 or mGluR5) negative allosteric modulator (NAM) and inverse agonist (human/mouse/rat mGlu5 Kd = 1.7/1.8/1.5 nM; IC50 against quisqualate stimulation = 6.4/16.8/8/8 by IP accumulation or 11.4/42/4/6.9 by Ca2+ mobilization using human/mouse/rat mGlu5 HEK293 transfectants; IC50 = 40.1 nM against constitutive IP level in human mGlu5 HEK293) with >1000-fold selectivity over 103 molecular targets, including all known mGluRs. CTEP is an excellent tool compound for long-term in vivo studies (in mice and rats) with good pharmacokinetic properties (B/P ratio = 2.6, oral bioavailability ~100%, T1/2 ~18 hrs post 4.5 mg/kg p.o. in mice) and reported to display 30- to 100-fold higher in vivo potency than MPEP and fenobam in two rodent behavioral models sensitive to antianxiety drugs.

儲存類別代碼

11 - Combustible Solids

水污染物質分類(WGK)

WGK 3

閃點(°F)

Not applicable

閃點(°C)

Not applicable


从最新的版本中选择一种:

分析证书(COA)

Lot/Batch Number

抱歉,我们目前尚未线上提供该产品的COA。

如需帮助,请联系 客户支持

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

Di Tian et al.
Nature neuroscience, 18(2), 182-184 (2015-01-13)
Human chromosome 16p11.2 microdeletion is the most common gene copy number variation in autism, but the synaptic pathophysiology caused by this mutation is largely unknown. Using a mouse with the same genetic deficiency, we found that metabotropic glutamate receptor 5
Aubin Michalon et al.
Neuron, 74(1), 49-56 (2012-04-17)
Fragile X syndrome (FXS) is the most common form of inherited intellectual disability. Previous studies have implicated mGlu5 in the pathogenesis of the disease, but a crucial unanswered question is whether pharmacological mGlu5 inhibition is able to reverse an already
Alison Hamilton et al.
Cell reports, 15(9), 1859-1865 (2016-05-24)
Beta-amyloid (Aβ) oligomers contribute to the pathophysiology of Alzheimer disease (AD), and metabotropic glutamate receptor 5 (mGluR5) has been shown to act as a receptor for both Aβ oligomers and cellular prion proteins. Furthermore, the genetic deletion of mGluR5 in
Stephanie A Barnes et al.
The Journal of neuroscience : the official journal of the Society for Neuroscience, 35(45), 15073-15081 (2015-11-13)
Previous studies have hypothesized that diverse genetic causes of intellectual disability (ID) and autism spectrum disorders (ASDs) converge on common cellular pathways. Testing this hypothesis requires detailed phenotypic analyses of animal models with genetic mutations that accurately reflect those seen
Aubin Michalon et al.
Biological psychiatry, 75(3), 189-197 (2013-08-06)
Fragile X syndrome (FXS) is the most common genetic cause for intellectual disability. Fmr1 knockout (KO) mice are an established model of FXS. Chronic pharmacological inhibition of metabotropic glutamate receptor 5 (mGlu5) in these mice corrects multiple molecular, physiological, and

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系技术服务部门