跳转至内容
Merck

28-1320

Sigma-Aldrich

硝酸银

SAJ first grade, ≥99.8%

别名:

硝酸银(I)盐

登录查看公司和协议定价


About This Item

线性分子式:
AgNO3
CAS号:
分子量:
169.87
MDL號碼:
分類程式碼代碼:
12352302
PubChem物質ID:
化驗:
≥99.8%
等級:
SAJ first grade
形狀:
solid

等級

SAJ first grade

蒸汽密度

5.8 (vs air)

化驗

≥99.8%

形狀

solid

存貨情形

available only in Japan

mp

212 °C (dec.) (lit.)

儲存溫度

15-25°C

SMILES 字串

[O-][N+]([O-])=O.[Ag+]

InChI

1S/Ag.NO3/c;2-1(3)4/q+1;-1

InChI 密鑰

SQGYOTSLMSWVJD-UHFFFAOYSA-N

正在寻找类似产品? 访问 产品对比指南

應用


  • In Situ Fabrication of Silver Nanoparticle-Decorated Polymeric Vesicles for Antibacterial Applications.: This article discusses the use of silver nitrate in the synthesis of polymeric vesicles decorated with silver nanoparticles, aimed at enhancing antibacterial properties. This approach represents a significant advancement in the development of targeted antibacterial therapies, showcasing the role of silver nitrate in the field of medical materials science (Zhang et al., 2024).

  • Impact of Metal Salt Oxidants and Preparation Technology on Efficacy of Bacterial Cellulose/Polypyrrole Flexible Conductive Fiber Membranes.: This study leverages the oxidizing properties of silver nitrate to enhance the conductivity and flexibility of polymeric fiber membranes. The findings contribute to advancements in wearable electronics and sensors, demonstrating the versatility of silver nitrate in engineering applications (Tao et al., 2024).

  • Control of the Hydroquinone/Benzoquinone Redox State in High-Mobility Semiconducting Conjugated Coordination Polymers.: This paper presents the use of silver nitrate in controlling redox states in semiconducting polymers, highlighting its crucial role in the development of high-performance electronic materials. The research underscores the application of silver nitrate in enhancing the electrical properties of novel polymeric materials (Huang et al., 2024).

訊號詞

Danger

危險分類

Aquatic Acute 1 - Aquatic Chronic 1 - Eye Dam. 1 - Met. Corr. 1 - Ox. Sol. 2 - Repr. 1B - Skin Corr. 1A

儲存類別代碼

5.1B - Oxidizing hazardous materials

水污染物質分類(WGK)

WGK 3

閃點(°F)

Not applicable

閃點(°C)

Not applicable


从最新的版本中选择一种:

分析证书(COA)

Lot/Batch Number

没有发现合适的版本?

如果您需要特殊版本,可通过批号或批次号查找具体证书。

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

Liming Wang et al.
ACS nano, 9(6), 6532-6547 (2015-05-23)
To predict potential medical value or toxicity of nanoparticles (NPs), it is necessary to understand the chemical transformation during intracellular processes of NPs. However, it is a grand challenge to capture a high-resolution image of metallic NPs in a single
Irina Blinova et al.
Environmental science and pollution research international, 20(5), 3456-3463 (2012-11-13)
Although silver nanoparticles (NPs) are increasingly used in various consumer products and produced in industrial scale, information on harmful effects of nanosilver to environmentally relevant organisms is still scarce. This paper studies the adverse effects of silver NPs to two
Tao Xu et al.
Organic letters, 14(21), 5416-5419 (2012-10-24)
A silver-catalyzed intramolecular oxidative aminofluorination of alkynes has been developed by using NFSI as a fluorinating reagent. This reaction represents an efficient method for the synthesis of various 4-fluoroisoquinolines and 4-fluoropyrrolo[α]isoquinolines.
Benjamin P Colman et al.
PloS one, 8(2), e57189-e57189 (2013-03-08)
A large fraction of engineered nanomaterials in consumer and commercial products will reach natural ecosystems. To date, research on the biological impacts of environmental nanomaterial exposures has largely focused on high-concentration exposures in mechanistic lab studies with single strains of
Lara Settimio et al.
Environmental pollution (Barking, Essex : 1987), 191, 151-157 (2014-05-20)
The fate and lability of added soluble Ag in soils over time was examined by measurement of labile metal (E-value) by isotopic dilution using the (110m)Ag radioactive isotope and the solid-phase speciation of Ag by X-ray absorption near edge structure

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系技术服务部门