跳转至内容
Merck

909637

Sigma-Aldrich

NanoFabTx PLGA-nano

for synthesis of 100 and 200 nm particles

别名:

NanoFabTx, NanoFabTx reagent kit, PLGA nanoformulation kit

登录查看公司和协议定价


About This Item

分類程式碼代碼:
12162002
分類程式碼代碼:
12161503
NACRES:
NC.25

描述

PLGA nanoparticle screening kit for synthesis of 100 and 200 nm particles

品質等級

應用

advanced drug delivery

儲存溫度

2-8°C

一般說明

NanoFabTx PLGA-nano reagent kit is a nanoformulation kit designed for the synthesis of specifically sized, drug-encapsulating poly(lactic-co-glycolic acid) (PLGA) nanoparticles. The NanoFabTx PLGA-nano reagent kit provides reagents (PLGA and stabilizer) and protocols to synthesize polymeric nanoparticles 75 to 200 nm in size. One protocol describes how to use the kit with standard glassware using a nanoprecipitation or solvent-displacement method. The second protocol describes how to use the kit with the NanoFabTx Microfluidic - nano device kit (Cat.No. 911593) for the fabrication of nanoparticles using microfluidic methods.

應用

With NanoFabTx PLGA-nano reagent kit, users can simplify their methods for PLGA nanoparticle synthesis and their drug loading experiments. Our protocols describe how to tune the synthetic parameters to achieve monodisperse nanoparticles 75 nm in size, 200 nm in size, or any size in between. As a result, the kit enables users to synthesize and test different particle sizes and identify the ideal size and drug loading of PLGA nanocarriers for their research application. The resulting particles are biocompatible and biodegradable and can be further modified to target specific tissues or to ensure slow and sustained drug release. PLGA is a biocompatible and biodegradable polymer that is approved by the FDA for biomedical and pharmaceutical applications and that is used widely in drug delivery systems for sustained release of many different types of therapeutic molecules. PLGA-based nanocarriers can be used to encapsulate both hydrophobic drugs like curcumin and lipophilic drugs like docetaxel. PLGA nanocarriers synthesized with the NanoFabTx kits are suitable for biomedical research applications such as oncology, immuno-oncology, gene delivery, and vaccine delivery. Polymeric nanoparticles are useful for intravenous or systemic delivery of drug molecules. For example, polymeric nanocarriers improve drug dissolution and solubility of hydrophobic and lipophilic drugs. In addition, the small size of polymeric nanocarriers make them much more likely than larger microparticles to bypass the reticuloendothelial system and complement system, usually leading to longer circulation half-lives. In addition, nanoparticles can pass through the blood-brain barrier, through tumor vasculature, and can enter cells via pinocytosis.

特點和優勢

  • Step-by-step protocols developed and tested by our formulation scientists
  • Flexible synthesis tool to create uniform and reproducible nanoparticles
  • Choose from standard glassware-based nanoprecipitation or microfluidic-based protocols
  • Optimized to make nanoparticles 75-200 nm nanoprecipitation or microfluidics with low polydispersity
  • Based on non-toxic, biodegradable polymers

法律資訊

NANOFABTX is a trademark of Sigma-Aldrich Co. LLC

儲存類別代碼

11 - Combustible Solids

閃點(°F)

Not applicable

閃點(°C)

Not applicable


从最新的版本中选择一种:

分析证书(COA)

Lot/Batch Number

抱歉,我们目前尚未线上提供该产品的COA。

如需帮助,请联系 客户支持

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

Gaurav Kumar et al.
Critical reviews in therapeutic drug carrier systems, 29(2), 149-182 (2012-04-06)
Drug-loaded polylactide-co-glycolide (PLGA) nanoparticles have been extensively studied and have a practical impact on drug delivery. Many PLGA-based nanoformulations have reached different stages of preclinical development; however, they present distinct challenges for researchers. This review discusses some of the challenges
L Martin-Banderas et al.
Mini reviews in medicinal chemistry, 13(1), 58-69 (2012-09-15)
This article presents the potential of PLGA nanoparticles for the oral administration of drugs. Different strategies are used to improve oral absorption of these nanoparticles. These strategies are based on modification of nanoparticle surface properties. They can be achieved either

商品

Professor Robert K. Prud’homme introduces flash nanoprecipitation (FNP) for nanoparticle fabrication, which is a scalable, rapid mixing process for nanoparticle formulations.

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系技术服务部门