跳转至内容
Merck

601535

Sigma-Aldrich

Lithium-7Li

≥99.8 atom % 7Li, ≥99.8% (CP)

登录查看公司和协议定价


About This Item

经验公式(希尔记法):
7Li
CAS号:
分子量:
7.02
分類程式碼代碼:
12141803
PubChem物質ID:

同位素純度

≥99.8 atom % 7Li

化驗

≥99.8% (CP)

形狀

solid

質量偏移

depleted

SMILES 字串

[7Li]

InChI

1S/Li

InChI 密鑰

WHXSMMKQMYFTQS-UHFFFAOYSA-N

包裝

This product may be available from bulk stock and can be packaged on demand. For information on pricing, availability and packaging, please contact Stable Isotopes Customer Service.

象形圖

FlameCorrosion

訊號詞

Danger

危險聲明

危險分類

Skin Corr. 1B - Water-react 1

安全危害

儲存類別代碼

4.3 - Hazardous materials which set free flammable gases upon contact with water

水污染物質分類(WGK)

WGK 1

閃點(°F)

Not applicable

閃點(°C)

Not applicable


从最新的版本中选择一种:

分析证书(COA)

Lot/Batch Number

没有发现合适的版本?

如果您需要特殊版本,可通过批号或批次号查找具体证书。

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

Mohamed Aklalouch et al.
ChemSusChem, 8(20), 3465-3471 (2015-09-19)
By comparing carbon electrodes with varying porosity in Li-O2 cells, we show that the effect of electrolyte stirring at a given current density can result in a change from 2D to 3D growth of discharged deposits. The change of morphology
Xiao Tang et al.
Scientific reports, 5, 11958-11958 (2015-07-08)
LiNi0.5Mn1.5O4 nanorods wrapped with graphene nanosheets have been prepared and investigated as high energy and high power cathode material for lithium-ion batteries. The structural characterization by X-ray diffraction, Raman spectroscopy, and Fourier transform infrared spectroscopy indicates the LiNi0.5Mn1.5O4 nanorods prepared
Emanuel Peled et al.
Nano letters, 15(6), 3907-3916 (2015-05-15)
Here, we report on the scalable synthesis and characterization of novel architecture three-dimensional (3D) high-capacity amorphous silicon nanowires (SiNWs)-based anodes with focus on studying their electrochemical degradation mechanisms. We achieved an unprecedented combination of remarkable performance characteristics, high loadings of
Birte Jache et al.
Angewandte Chemie (International ed. in English), 53(38), 10169-10173 (2014-07-25)
Although being the standard anode material in lithium-ion batteries (LIBs), graphite so far is considered to fail application in sodium-ion batteries (NIBs) because the Na-C system lacks suitable binary intercalation compounds. Here we show that this limitation can be circumvented
M Helen et al.
Scientific reports, 5, 12146-12146 (2015-07-16)
Lithium-sulphur batteries have generated tremendous research interest due to their high theoretical energy density and potential cost-effectiveness. The commercial realization of Li-S batteries is still hampered by reduced cycle life associated with the formation of electrolyte soluble higher-order polysulphide (Li2Sx

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系技术服务部门