Skip to Content
Merck
All Photos(3)

Key Documents

441090

Sigma-Aldrich

2,2′-Azobis(2-methylpropionitrile)

98%

Synonym(s):

α,α′-Azoisobutyronitrile, AIBN, Azobisisobutyronitrile, Free radical initiator

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
(CH3)2C(CN)N=NC(CH3)2CN
CAS Number:
Molecular Weight:
164.21
Beilstein:
1708400
EC Number:
MDL number:
UNSPSC Code:
12162002
PubChem Substance ID:
NACRES:
NA.23

Quality Level

Assay

98%

form

powder

mp

102-104 °C (dec.) (lit.)

storage temp.

2-8°C

SMILES string

CC(C)(\N=N\C(C)(C)C#N)C#N

InChI

1S/C8H12N4/c1-7(2,5-9)11-12-8(3,4)6-10/h1-4H3/b12-11+

InChI key

OZAIFHULBGXAKX-VAWYXSNFSA-N

Looking for similar products? Visit Product Comparison Guide

Application

2,2′-Azobis(2-methylpropionitrile) can be used as an initiator in the preparation of:
  • Polystyrene by soap-free emulsion polymerization.
  • Molecularly imprinted polymer(MIP) using 1-vinyl imidazole. MIP can be used to quantify acid violet 19 dye in river water samples.

Storage and Stability

Warning: these products are subject to the Explosives Act and must be transported refrigerated - additional costs for transport will apply.

Pictograms

FlameExclamation mark

Signal Word

Danger

Hazard Statements

Hazard Classifications

Acute Tox. 4 Inhalation - Acute Tox. 4 Oral - Aquatic Chronic 3 - Self-react. C

Supplementary Hazards

Storage Class Code

4.1A - Other explosive hazardous materials

WGK

WGK 2

Flash Point(F)

122.0 °F

Flash Point(C)

50 °C

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Tetrahedron Letters, 48, 5585-5585 (2007)
Lianghui Liu et al.
Organic letters, 14(22), 5692-5695 (2012-10-31)
In the presence of a catalytic amount of radical initiator AIBN, primary amines are oxidatively coupled to imines and tertiary amines are cyanated to α-aminonitriles. These "metal-free" aerobic oxidative coupling reactions may find applications in a wide range of "green"
Bor-Shiunn Lee et al.
Journal of endodontics, 37(2), 246-249 (2011-01-18)
We have developed new urethane acrylate-based root canal sealers using polycarbonate (PC) as polyol and 2,2-azobis(2-methyl)butyronitrile (AMBN) as a thermal initiator. The purpose of this study was to compare the properties among a group of seven sealers: (1) polybutyleneadipate (PBA)
Wenwen Li et al.
Macromolecular rapid communications, 32(1), 74-81 (2011-03-25)
Amphiphilic star shaped polymers with poly(ethylene oxide) (PEO) arms and cross-linked hydrophobic core were synthesized in water via either conventional free radical polymerization (FRP) or atom transfer radical polymerization (ATRP) techniques using a simple "arm-first" method. In FRP, PEO based
K Shivaji Sharma et al.
Langmuir : the ACS journal of surfaces and colloids, 24(23), 13581-13590 (2008-11-05)
A novel class of nonionic amphipols (NAPols) designed to handle membrane proteins in aqueous solutions has been synthesized, and its solution properties have been examined. These were synthesized through free radical cotelomerization of glucose-based hydrophilic and amphiphilic monomers derived from

Articles

We presents an article regarding common FAQ's for initiators and stabalizers

The manufacture of monomers for use in ophthalmic applications is driven by the need for higher purity, improved reliability of manufacturing supply, but ultimately by the need for the increased comfort, convenience, and safety of contact lens wearers. Daily wear contact lenses have the potential to fill this need for many customers; however, their widespread use is constrained by higher costs compared to weekly- or monthly-based lenses. New approaches that improve cost structure and result in higher quality raw materials are needed to help make contact lenses more affordable and accelerate growth of the contact lens market.

RAFT (Reversible Addition Fragmentation chain Transfer) polymerization is a reversible deactivation radical polymerization (RDRP) and one of the more versatile methods for providing living characteristics to radical polymerization.

Tools for Performing ATRP

Protocols

Zirconium bromonorbornanelactone carboxylate triacrylate (PRM30) is a zirconium-containing multifunctional acrylate useful for producing cured, transparent films with high refractive indices.

Sigma-Aldrich presents an article about RAFT, or Reversible Addition/Fragmentation Chain Transfer, which is a form of living radical polymerization.

Sigma-Aldrich presents an article about the typical procedures for polymerizing via ATRP, which demonstrates that in the following two procedures describe two ATRP polymerization reactions as performed by Prof. Dave Hadddleton′s research group at the University of Warwick.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service