Skip to Content
Merck
All Photos(3)

Key Documents

M0753

Sigma-Aldrich

Molybdenum(VI) oxide

ReagentPlus®, ≥99.5%

Synonym(s):

Molybdenum trioxide

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
MoO3
CAS Number:
Molecular Weight:
143.94
EC Number:
MDL number:
UNSPSC Code:
12352303
PubChem Substance ID:
NACRES:
NA.55
Assay:
≥99.5%
form:
crystals

Quality Level

product line

ReagentPlus®

Assay

≥99.5%

form

crystals

reaction suitability

reagent type: catalyst
core: molybdenum

mp

795 °C (lit.)

cation traces

NH4+: ≤0.02%

SMILES string

O=[Mo](=O)=O

InChI

1S/Mo.3O

InChI key

JKQOBWVOAYFWKG-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Application

Precursor to LAMOX fast ion conductors and superconductors.
Used in the solid state synthesis of a remarkable ternary, reduced molybdenum oxide, Pr4Mo9O18, whose structure contains previously unknown Mo7, Mo13 and Mo19 clusters. The new cluster product is a small band gap semiconductor.

Legal Information

ReagentPlus is a registered trademark of Merck KGaA, Darmstadt, Germany

Pictograms

Health hazardExclamation mark

Signal Word

Warning

Hazard Statements

Hazard Classifications

Carc. 2 - Eye Irrit. 2 - STOT SE 3

Target Organs

Respiratory system

Storage Class Code

11 - Combustible Solids

WGK

WGK 1

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Patrick R Brown et al.
Nano letters, 11(7), 2955-2961 (2011-06-15)
The ability to engineer interfacial energy offsets in photovoltaic devices is one of the keys to their optimization. Here, we demonstrate that improvements in power conversion efficiency may be attained for ZnO/PbS heterojunction quantum dot photovoltaics through the incorporation of
Seiichiro Murase et al.
Advanced materials (Deerfield Beach, Fla.), 24(18), 2459-2462 (2012-04-11)
An MoO(3) film spin-coated from a solution prepared by an extremely facile and cost-effective synthetic method is introduced as an anode buffer layer of bulk-heterojunction polymer photovoltaic devices. The device efficiency using the MoO(3) anode buffer layer is comparable to
Design of transparent anodes for resonant cavity enhanced light harvesting in organic solar cells.
Nicholas P Sergeant et al.
Advanced materials (Deerfield Beach, Fla.), 24(6), 728-732 (2012-01-04)
Claudio Girotto et al.
ACS applied materials & interfaces, 3(9), 3244-3247 (2011-08-13)
We report on a sol-gel-based technique to fabricate MoO(3) thin films as a hole-injection layer for solution-processed or thermally evaporated organic solar cells. The solution-processed MoO(3) (sMoO(3)) films are demonstrated to have equal performance to hole-injection layers composed of either
Yu-Zhan Wang et al.
The Journal of chemical physics, 134(3), 034706-034706 (2011-01-26)
The electronic structures at the MoO(3)∕Co interface were investigated using synchrotron-based ultraviolet and x-ray photoelectron spectroscopy. It was found that interfacial chemical reactions lead to the reduction of Mo oxidation states and the formation of Co-O bonds. These interfacial chemical

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service