Skip to Content
Merck
All Photos(1)

Documents

759414

Sigma-Aldrich

Tetraethyl orthosilicate

packaged for use in deposition systems

Synonym(s):

Tetraethyl orthosilicate, Orthosilicic acid tetraethyl ester, Silicon tetraethoxide, Tetraethoxysilane, Tetraethoxysilicon(IV), Tetraethyl silicate, TEOS

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
Si(OC2H5)4
CAS Number:
Molecular Weight:
208.33
Beilstein:
1422225
EC Number:
MDL number:
UNSPSC Code:
12352300
PubChem Substance ID:
NACRES:
NA.23

vapor density

7.2 (vs air)

Quality Level

vapor pressure

<1 mmHg ( 20 °C)

Assay

≥99.5% (GC)

form

liquid

refractive index

n20/D 1.382 (lit.)

bp

168 °C (lit.)

density

0.933 g/mL at 20 °C (lit.)

SMILES string

CCO[Si](OCC)(OCC)OCC

InChI

1S/C8H20O4Si/c1-5-9-13(10-6-2,11-7-3)12-8-4/h5-8H2,1-4H3

InChI key

BOTDANWDWHJENH-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Application

Tetraethyl orthosilicate (TEOS) is an oxygen containing precursor of Si used for the deposition of:
  • Si oxide
  • Oxycarbide
  • Doped silicate
  • Silanol
  • Siloxane polymer
  • Organosilicon thin films

The films can be deposited at low temperatues (<250 °C). TEOS is also used to deposit mesoporous and nanoporous thin films of silica. These porous films can be doped during deposition to further enhance their properties.
Commonly used as a precursor to prepare xerogel
Will interact with dodecylamine in the formation of intercalation compounds of H+-magadiite and used in a study of mixed-metal bioactive glasses.

Pictograms

FlameExclamation mark

Signal Word

Warning

Hazard Statements

Hazard Classifications

Acute Tox. 4 Inhalation - Eye Irrit. 2 - Flam. Liq. 3 - STOT SE 3

Target Organs

Respiratory system

Storage Class Code

3 - Flammable liquids

WGK

WGK 1

Flash Point(F)

113.0 °F - closed cup

Flash Point(C)

45 °C - closed cup


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Andreas Kay et al.
Journal of the American Chemical Society, 128(49), 15714-15721 (2006-12-07)
Thin films of silicon-doped Fe2O3 were deposited by APCVD (atmospheric pressure chemical vapor deposition) from Fe(CO)5 and TEOS (tetraethoxysilane) on SnO2-coated glass at 415 degrees C. HRSEM reveals a highly developed dendritic nanostructure of 500 nm thickness having a feature
Nils R Blumenthal et al.
Proceedings of the National Academy of Sciences of the United States of America, 111(45), 16124-16129 (2014-10-29)
Extracellular soluble signals are known to play a critical role in maintaining neuronal function and homeostasis in the CNS. However, the CNS is also composed of extracellular matrix macromolecules and glia support cells, and the contribution of the physical attributes
Seong Cheol Hong et al.
International journal of nanomedicine, 6, 3219-3231 (2012-01-13)
Superparamagnetic iron oxide nanoparticles (SPIONs) have been widely utilized for the diagnosis and therapy of specific diseases, as magnetic resonance imaging (MRI) contrast agents and drug-delivery carriers, due to their easy transportation to targeted areas by an external magnetic field.
Evan M Hetrick et al.
Biomaterials, 30(14), 2782-2789 (2009-02-24)
The ability of nitric oxide (NO)-releasing silica nanoparticles to kill biofilm-based microbial cells is reported. Biofilms of Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, and Candida albicans were formed in vitro and exposed to NO-releasing silica nanoparticles. Replicative viability
Lin Lin et al.
Colloids and surfaces. B, Biointerfaces, 101, 97-100 (2012-07-17)
Hollow silica spheres with round mesoporous shells were synthesized by core-shell template method, using monodispersed cationic polystyrene particles as core, and TEOS (tetraethoxysilane) as the silica source to form shell. After calcination at 550°C, uniform spheres with a thin shell

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service