Skip to Content
Merck
All Photos(1)

Key Documents

725366

Sigma-Aldrich

Iron oxide(II,III), magnetic nanoparticles solution

20 nm avg. part. size, 5 mg/mL in H2O

Synonym(s):

Magnetic iron oxide nanocrystals, Magnetite, Superparamagnetic iron oxide nanoparticles

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
Fe3O4
CAS Number:
Molecular Weight:
231.53
MDL number:
UNSPSC Code:
12352302
PubChem Substance ID:
NACRES:
NA.23

form

dispersion
nanoparticles

Quality Level

concentration

5 mg/mL in H2O

magnetization

>20 emu/g, at 4500Oe

particle size

18-22 nm

avg. part. size

20 nm

density

1.00 g/mL at 25 °C

SMILES string

O=[Fe].O=[Fe]O[Fe]=O

InChI

1S/3Fe.4O

InChI key

SZVJSHCCFOBDDC-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Concentration 5mg/ml includes total weight nanocrystals plus ligands.

Application

  • Magnetic iron oxide nanoparticle (IONP) synthesis to applications: present and future: This report outlines the co-precipitation synthesis of magnetite nanoparticles using Fe(II) and Fe(III) solutions and discusses their future applications (N Ajinkya et al., 2020).
  • Surface modification of magnetic iron oxide nanoparticles: Explores the surface engineering of iron oxide nanoparticles (IONPs) to enhance their functionality for various applications (N Zhu et al., 2018).
  • Recent advances on iron oxide magnetic nanoparticles as sorbents of organic pollutants in water and wastewater treatment: Discusses the use of iron oxide magnetic nanoparticles in removing organic pollutants from water, highlighting the synthesis of core-shell magnetic nanoparticles (AM Gutierrez et al., 2017).
  • Potential toxicity of iron oxide magnetic nanoparticles: Reviews the potential toxic effects of iron oxide magnetic nanoparticles, emphasizing their stability, biocompatibility, and size control (N Malhotra et al., 2020).
  • Co-precipitation in aqueous solution synthesis of magnetite nanoparticles using iron (III) salts as precursors: Details the synthesis process of iron oxide nanocrystals and their potential applications in various fields (MI Khalil, 2015).

Storage Class Code

12 - Non Combustible Liquids

WGK

nwg

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Jens Baumgartner et al.
Nature materials, 12(4), 310-314 (2013-02-05)
The formation of crystalline materials from solution is usually described by the nucleation and growth theory, where atoms or molecules are assumed to assemble directly from solution. For numerous systems, the formation of the thermodynamically stable crystalline phase is additionally
Marina I Siponen et al.
Nature, 502(7473), 681-684 (2013-10-08)
Magnetotactic bacteria align along the Earth's magnetic field using an organelle called the magnetosome, a biomineralized magnetite (Fe(II)Fe(III)2O4) or greigite (Fe(II)Fe(III)2S4) crystal embedded in a lipid vesicle. Although the need for both iron(II) and iron(III) is clear, little is known
Maoquan Chu et al.
Biomaterials, 34(16), 4078-4088 (2013-03-08)
The photothermal effect of Fe3O4 magnetic nanoparticles is investigated for cancer therapy both in vitro and in vivo experiments. Heat is found to be rapidly generated by red and near-infrared (NIR) range laser irradiation of Fe3O4 nanoparticles with spherical, hexagonal and wire-like
A Aranda et al.
Toxicology in vitro : an international journal published in association with BIBRA, 27(2), 954-963 (2013-01-30)
No consensus exists on how to address possible toxicity of nanomaterials as they interfere with most in vitro screening tests based on colorimetric and fluorimetric probes such as the dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay for detection of oxidative species. In the
Tsung-Ju Li et al.
Biomaterials, 34(32), 7873-7883 (2013-07-24)
We present an approach for synchronizing hyperthermia and thermal-responsive local drug release. The targeting probe has a magnetite nanocrystal (Fe₃O₄@PSMA) core and a polynucleotide shell that carries 5-fluorouracil (5-FU) and anti-human epidermal growth factor receptor 2 (anti-HER2) antibody for cancer

Articles

A key challenge for nanomaterial safety assessment is the ability to handle the large number of newly engineered nanomaterials (ENMs), including developing cost-effective methods that can be used for hazard screening.

Professor Hui Mao explores the use of superparamagnetic iron oxide nanoparticles (INOPs) that offer an alternate contrast-enhancing mechanism.

Professor Yadong Yin (University of California Riverside, USA) examines both direct (thermal decomposition, solvothermal, hydrothermal) and indirect (templated) synthesis methods of magnetite nanocrystals and reviews in detail the landscape of these various synthetic methods for magnetite nanocrystal and their applications in magnetic assembly, magnetic hyperthermia, and Li-Ion batteries.

The application of magnetism and magnetic materials pervades our modern civilization in the form of electrical power, communications and information storage.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service