Skip to Content
Merck
All Photos(1)

Key Documents

SML0096

Sigma-Aldrich

Cinnabarinic Acid

≥98% (HPLC)

Synonym(s):

2-amino-3-oxo-3H-phenoxazine-1,9-dicarboxylic acid, Cinnabaric acid

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C14H8N2O6
CAS Number:
Molecular Weight:
300.22
MDL number:
UNSPSC Code:
12352106
PubChem Substance ID:
NACRES:
NA.25

Quality Level

Assay

≥98% (HPLC)

form

powder

storage condition

desiccated

color

red to very dark red

solubility

DMSO: ≥4 mg/mL

storage temp.

2-8°C

SMILES string

NC1=C(C(O)=O)C2=Nc3c(OC2=CC1=O)cccc3C(O)=O

InChI

1S/C14H8N2O6/c15-10-6(17)4-8-12(9(10)14(20)21)16-11-5(13(18)19)2-1-3-7(11)22-8/h1-4H,15H2,(H,18,19)(H,20,21)

InChI key

FSBKJYLVDRVPTK-UHFFFAOYSA-N

Application

Cinnabarinic acid may be used in studies of the functions of components of the kynurenine metabolic pathway. It may be used to study it role as a metabotropic glutamate receptor (mGlu4R-specific) agonist.

Biochem/physiol Actions

Caspase Inducer; mGlu4R agonist
Cinnabarinic acid (CA) connects between initiation of the kynurenine pathway and immune tolerance that is used to prevent neuroinflammation.
Cinnabarinic acid is a kynurenine pathway metabolite of tryptophan, produced by the oxidation of 3-Hydroxyanthranilic acid. Cinnabarinic acid leads to loss of mitochondrial respiration and apoptosis, and has also been shown to be an mGlu4R-specific agonist.

Features and Benefits

This compound is a featured product for Apoptosis research. Click here to discover more featured Apoptosis products. Learn more about bioactive small molecules for other areas of research at sigma.com/discover-bsm.

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

S Christen et al.
Biochemistry, 31(34), 8090-8097 (1992-09-01)
Since 3-hydroxyanthranilic acid (3HAA), an oxidation product of tryptophan metabolism, is a powerful radical scavenger [Christen, S., Peterhans, E., & Stocker, R. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 2506], its reaction with peroxyl radicals was investigated further. Exposure to
U Temp et al.
Applied and environmental microbiology, 65(2), 389-395 (1999-01-30)
When glucose is the carbon source, the white rot fungus Pycnoporus cinnabarinus produces a characteristic red pigment, cinnabarinic acid, which is formed by laccase-catalyzed oxidation of the precursor 3-hydroxyanthranilic acid. When P. cinnabarinus was grown on media containing cellobiose or
Hideaki Iizuka et al.
Biomedical chromatography : BMC, 24(3), 231-234 (2009-07-25)
A fluorimetric detection method for one of the tryptophan metabolites, cinnabarinic acid (CA), which has recently been reported to have the ability to induce apoptosis in thymocytes, was developed using o-tolyl hydrazine (TH) as the derivatization reagent. The carbonyl group
H Ogawa et al.
Hoppe-Seyler's Zeitschrift fur physiologische Chemie, 364(11), 1507-1518 (1983-11-01)
The formation of cinnabarinate in the presence of manganese ions and catalase was investigated spectrophotometrically. The absorption peak of cinnabarinate at 460 nm appeared only in a reaction system containing manganese ions and catalase. If catalase was omitted, a new
H Iwahashi et al.
The Biochemical journal, 251(3), 893-899 (1988-05-01)
Superoxide dismutase (SOD) enhanced the formation of hydroxyl radicals, which were detected by using the e.s.r. spin-trapping technique, in a reaction mixture containing 3-hydroxyanthranilic acid (or p-aminophenol), Fe3+ ions, EDTA and potassium phosphate buffer, pH 7.4. The hydroxyl-radical formation enhanced

Related Content

Apoptosis, or programmed cell death (PCD), is a selective process for the removal of unnecessary, infected or transformed cells in various biological systems. As it plays a role in the homeostasis of multicellular organisms, apoptosis is tightly regulated through two principal pathways by a number of regulatory and effector molecules.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service