Skip to Content
Merck
All Photos(4)

Documents

G0885

Sigma-Aldrich

Glycogen from bovine liver

≥85% dry basis (enzymatic)

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
(C6H10O5)n
CAS Number:
EC Number:
MDL number:
UNSPSC Code:
12352201
NACRES:
NA.25

biological source

bovine liver

Assay

≥85% dry basis (enzymatic)

form

powder

color

white to off-white

storage temp.

2-8°C

InChI

1S/C24H42O21/c25-1-5-9(28)11(30)16(35)22(41-5)39-4-8-20(45-23-17(36)12(31)10(29)6(2-26)42-23)14(33)18(37)24(43-8)44-19-7(3-27)40-21(38)15(34)13(19)32/h5-38H,1-4H2/t5-,6-,7-,8-,9-,10-,11+,12+,13-,14-,15-,16-,17-,18-,19-,20-,21+,22+,23-,24-/m1/s1

InChI key

BYSGBSNPRWKUQH-UJDJLXLFSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Glycogen is a branched polymer of glucose synthesized by animal cells for energy storage and release. It is constructed of predominantly α1→4 glycosidic bonds with branches created through α1→6 glycosidic bonds.

Application

Glycogen from bovine liver may be used in carbohydrate storage and metabolism research and to study various enzymes such as alpha-glucosidase(s) (GAA) and glycogen phosphorylase(s) (GPase). Glycogen may be used as a substrate to identify and characterize its metabolizing enzymes.

Preparation Note

Prepared by a modification of the procedure of Bell, et al., Biochem. J., 28, 882 (1934).

Other Notes

To gain a comprehensive understanding of our extensive range of Polysaccharides for your research, we encourage you to visit our Carbohydrates Category page.

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Istvan Katona et al.
Orphanet journal of rare diseases, 9, 17-17 (2014-02-06)
Glycogenosis type II or Pompe disease is an autosomal-recessive lysosomal storage disease due to mutations in the gene encoding acid alpha-glucosidase (GAA), an enzyme required for lysosomal glycogen degradation. The disease predominantly affects the skeletal and respiratory muscles but there
Louise Knudsen et al.
PloS one, 7(12), e51972-e51972 (2013-01-10)
Insulin can trigger metabolic as well as mitogenic effects, the latter being pharmaceutically undesirable. An understanding of the structure/function relationships between insulin receptor (IR) binding and mitogenic/metabolic signalling would greatly facilitate the preclinical development of new insulin analogues. The occurrence
Marion Curtis et al.
Cell metabolism, 29(1), 141-155 (2018-09-04)
Successful metastasis requires the co-evolution of stromal and cancer cells. We used stable isotope labeling of amino acids in cell culture coupled with quantitative, label-free phosphoproteomics to study the bidirectional signaling in ovarian cancer cells and human-derived, cancer-associated fibroblasts (CAFs) after
Sonya V Iverson et al.
Free radical biology & medicine, 63, 369-380 (2013-06-08)
Besides helping to maintain a reducing intracellular environment, the thioredoxin (Trx) system impacts bioenergetics and drug metabolism. We show that hepatocyte-specific disruption of Txnrd1, encoding Trx reductase-1 (TrxR1), causes a metabolic switch in which lipogenic genes are repressed and periportal
Dang Hai Dang Nguyen et al.
Journal of bacteriology, 196(11), 1941-1949 (2014-03-13)
We studied the activity of a debranching enzyme (TreX) from Sulfolobus solfataricus on glycogen-mimic substrates, branched maltotetraosyl-β-cyclodextrin (Glc₄-β-CD), and natural glycogen to better understand substrate transglycosylation and the effect thereof on glycogen debranching in microorganisms. The validation test of Glc₄-β-CD

Articles

Glucose metabolism is regulated by the opposing actions of insulin and glucagon. Insulin is released from pancreatic ß cells in response to high blood glucose levels and regulates glucose metabolism through its actions on muscle, liver, and adipose tissue.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service