Skip to Content
Merck
All Photos(2)

Key Documents

706493

Sigma-Aldrich

(3-Aminopropyl)triethoxysilane

packaged for use in deposition systems, ≥98%

Synonym(s):

3-Triethoxysilylpropylamine, APTES, APTS

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
H2N(CH2)3Si(OC2H5)3
CAS Number:
Molecular Weight:
221.37
Beilstein:
1754988
EC Number:
MDL number:
UNSPSC Code:
12352103
PubChem Substance ID:
NACRES:
NA.23

Quality Level

Assay

≥98%

form

liquid

bp

217 °C/760 mmHg (lit.)

density

0.946 g/mL at 25 °C (lit.)

SMILES string

CCO[Si](CCCN)(OCC)OCC

InChI

1S/C9H23NO3Si/c1-4-11-14(12-5-2,13-6-3)9-7-8-10/h4-10H2,1-3H3

InChI key

WYTZZXDRDKSJID-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Atomic number of base material: 14 Silicon

Pictograms

CorrosionExclamation mark

Signal Word

Danger

Hazard Statements

Hazard Classifications

Acute Tox. 4 Oral - Eye Dam. 1 - Skin Corr. 1B - Skin Sens. 1

Storage Class Code

8A - Combustible corrosive hazardous materials

WGK

WGK 1

Flash Point(F)

199.4 °F - closed cup

Flash Point(C)

93 °C - closed cup

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Erhan Zor et al.
Biosensors & bioelectronics, 42, 321-325 (2012-12-05)
A new electrochemical biosensor based on the human serum albumin/graphene oxide/3-aminopropyl-triethoxysilane modified indium tin oxide electrode (ITO/APTES/GO/HSA) has been developed for the discrimination of tryptophan (Trp) enantiomers.The electrode has been characterized by scanning electron microscopy (SEM) and electrochemical techniques. The
Dan Zheng et al.
Talanta, 99, 22-28 (2012-09-13)
A mediatorless glucose biosensor was developed by the immobilization of glucose oxidase (GOx) to graphene-functionalized glassy carbon electrode (GCE). The surface of GCE was functionalized with graphene by incubating it with graphene dispersed in 3-aminopropyltriethoxysilane (APTES), which acted both as
Vladimir Gubala et al.
Analytica chimica acta, 760, 75-82 (2012-12-26)
Herein a simple analytical method is presented for the characterization of biomolecule adsorption on cyclo olefin polymer (COP, trade name: Zeonor(®)) substrates which are widely used in microfluidic lab-on-a-chip devices. These Zeonor(®) substrates do not possess native functional groups for
Peng Yuan et al.
Nanotechnology, 23(37), 375705-375705 (2012-08-28)
The surfaces of naturally occurring halloysite nanotubes were functionalized with γ-aminopropyltriethoxysilane (APTES), which was found to have a substantial effect on the loading and subsequent release of a model dye molecule. APTES was mostly anchored at the internal lumen surface
Sandeep Kumar Vashist
Analytical biochemistry, 423(1), 23-25 (2012-01-31)
We developed a method to completely regenerate the gold (Au) surface of 3-aminopropyltriethoxysilane (APTES)-functionalized Au-coated surface plasmon resonance (SPR) chip that had been used for human fetuin A (HFA) immunoassay. It involved treatment of the used SPR chip with freshly

Articles

Atomic Layer Deposition (ALD) is a coating technology that allows perfectly conformal deposition onto complex 3D surfaces. The reason for this uniform coating lies in the saturative chemisorption of sequential cycles of precursor vapors.

Nanocomposite Coatings with Tunable Properties Prepared by Atomic Layer Deposition

Silica is a very popular inorganic nanomaterial used in a wide range of applications including fillers for rubber, catalyst supports, separation media, carriers in food and agriculture, and abrasive/anticaking agents in cosmetics. It is also widely believed to be an important material for biomedical applications for following reasons.

Thin film photovoltaic devices have become increasingly important in efficiently harnessing solar energy to meet consumer demand.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service