Skip to Content
Merck
All Photos(1)

Documents

482595

Sigma-Aldrich

Poly(ethyleneimine) solution

average Mn ~1,200, average Mw ~1300 by LS, 50 wt. % in H2O

Synonym(s):

Ethyleneimine polymer solution, PEI

Sign Into View Organizational & Contract Pricing


About This Item

CAS Number:
UNSPSC Code:
12162002
PubChem Substance ID:
NACRES:
NA.23

mol wt

average Mn ~1,200
average Mw ~1300 by LS

concentration

50 wt. % in H2O

refractive index

n20/D 1.454

viscosity

200-500 cP(25 °C)(lit.)

density

1.08 g/mL at 25 °C

InChI

1S/C2H5N/c1-2-3-1/h3H,1-2H2

InChI key

NOWKCMXCCJGMRR-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Poly(ethyleneimine) (PEI) solution is an amine based chelating ligand that can be prepared by the polymerization of arizidine. It can be impregnated to form an anion exchange membrane for chromatography applications.

Application

PEI can be used as a complexing agent in the fabrication of composite membranes, which can be used in filtration of metals from the aqueous solution.

Pictograms

Exclamation markEnvironment

Signal Word

Warning

Hazard Statements

Hazard Classifications

Aquatic Chronic 2 - Skin Sens. 1

Storage Class Code

10 - Combustible liquids

WGK

WGK 2


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Micro-nano structure poly (ether sulfones)/poly (ethyleneimine) nanofibrous affinity membranes for adsorption of anionic dyes and heavy metal ions in aqueous solution
Min M, et al.
Chemical Engineering Journal, 197(4), 88-100 (2012)
Sorption and detoxification of chromium (VI) by aerobic granules functionalized with polyethylenimine
Sun X, et al.
Water Research, 44(8), 2517-2524 (2010)
Poly (ethyleneimine) as complexing agent for separation of metal ions using membrane filtration
Bayer , et al.
Polymer Bull., 13(4), 307-311 (1985)
Sorption and filtration of Hg (II) ions from aqueous solutions with a membrane containing poly (ethyleneimine) as a complexing polymer
Bessbousse H, et al.
Journal of Membrane Science, 325(2), 997-1006 (2008)
Mercury removal from synthetic solutions using poly (2-hydroxyethylmethacrylate) gel beads modified with poly (ethyleneimine)
Denizli A, et al.
Reactive and Functional Polymers, 55(2), 121-130 (2003)

Articles

New methods for materials fabrication at the micro- and nanoscale will drive scientific and technological advances in areas of materials science, chemistry, physics, and biology. The broad diversity of potentially relevant materials, length scales, and architectures underscores the need for flexible patterning approaches. One important example is the fabrication of 3D periodic structures composed of colloidal, polymeric, or semiconductor5 materials.

Professor Yoshiki Katayama (Kyushu University, Japan) discusses recent advances in drug delivery systems and strategies that exploit the EPR effect, with a special focus on stimuli-responsive systems based on novel materials.

Gene therapy has become one of the most discussed techniques in biomedical research in recent years.

We present an article that discusses two applications in particular; first, using these layers as polyelectrolyte membranes to control permeability.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service