Skip to Content
Merck
  • Ift172 conditional knock-out mice exhibit rapid retinal degeneration and protein trafficking defects.

Ift172 conditional knock-out mice exhibit rapid retinal degeneration and protein trafficking defects.

Human molecular genetics (2018-04-17)
Priya R Gupta, Nachiket Pendse, Scott H Greenwald, Mihoko Leon, Qin Liu, Eric A Pierce, Kinga M Bujakowska
ABSTRACT

Intraflagellar transport (IFT) is a bidirectional transport process that occurs along primary cilia and specialized sensory cilia, such as photoreceptor outersegments. Genes coding for various IFT components are associated with ciliopathies. Mutations in IFT172 lead to diseases ranging from isolated retinal degeneration to severe syndromic ciliopathies. In this study, we created a mouse model of IFT172-associated retinal degeneration to investigate the ocular disease mechanism. We found that depletion of IFT172 in rod photoreceptors leads to a rapid degeneration of the retina, with severely reduced electroretinography (ERG) responses by 1 month and complete outer-nuclear layer (ONL) degeneration by 2 months. We investigated molecular mechanisms of degeneration and show that IFT172 protein reduction leads to mislocalization of specific photoreceptor outersegment (OS) proteins (RHO, RP1, IFT139), aberrant light-driven translocation of alpha transducin and altered localization of glioma-associated oncogene family member 1 (GLI1). This mouse model exhibits key features of the retinal phenotype observed in patients with IFT172-associated blindness and can be used for in vivo testing of ciliopathy therapies.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-Cre Recombinase Antibody, clone 2D8, ascites fluid, clone 2D8, Chemicon®
Sigma-Aldrich
Anti-Rhodopsin Antibody, CT, last 9 amino acids, clone Rho 1D4, clone Rho 1D4, Chemicon®, from mouse
Sigma-Aldrich
D.E.R. 332, used as embedding medium