Skip to Content
Merck
All Photos(1)

Key Documents

701971

Sigma-Aldrich

Poly(ethylene glycol) diacrylate

average Mn 2,000, acrylate, MEHQ as inhibitor (may contain)

Synonym(s):

Polyethylene glycol, PEG diacrylate

Sign Into View Organizational & Contract Pricing


About This Item

CAS Number:
MDL number:
UNSPSC Code:
12162002
NACRES:
NA.23

product name

Poly(ethylene glycol) diacrylate, average Mn 2,000, contains ≤1500 ppm MEHQ as inhibitor (may contain)

form

powder

Quality Level

mol wt

average Mn 2,000

contains

≤1500 ppm MEHQ as inhibitor (may contain)

reaction suitability

reagent type: cross-linking reagent
reaction type: Polymerization Reactions

transition temp

Tm 51-56 °C

Ω-end

acrylate

α-end

acrylate

polymer architecture

shape: linear
functionality: homobifunctional

storage temp.

−20°C

SMILES string

OCCO.OC(=O)C=C

InChI

1S/C8H10O4/c1-3-7(9)11-5-6-12-8(10)4-2/h3-4H,1-2,5-6H2

InChI key

KUDUQBURMYMBIJ-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Pictograms

CorrosionExclamation mark

Signal Word

Danger

Hazard Statements

Hazard Classifications

Eye Dam. 1 - Skin Irrit. 2 - Skin Sens. 1

Storage Class Code

11 - Combustible Solids

WGK

WGK 1

Flash Point(F)

230.0 °F - closed cup

Flash Point(C)

110 °C - closed cup

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Articles

Patterning of PEG-based Hydrogels - Engineering Spatial Complexity

Professor Shrike Zhang (Harvard Medical School, USA) discusses advances in 3D-bioprinted tissue models for in vitro drug testing, reviews bioink selections, and provides application examples of 3D bioprinting in tissue model biofabrication.

Professor Shrike Zhang (Harvard Medical School, USA) discusses advances in 3D-bioprinted tissue models for in vitro drug testing, reviews bioink selections, and provides application examples of 3D bioprinting in tissue model biofabrication.

In the past two decades, tissue engineering and regenerative medicine have become important interdisciplinary fields that span biology, chemistry, engineering, and medicine.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service