Skip to Content
Merck
All Photos(1)

Documents

790532

Sigma-Aldrich

Boron nitride

nanopowder, <150 nm avg. part. size (TEM), 99% trace metals basis

Synonym(s):

Boron mononitride, Hexagonal boron nitride, White graphite

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
BN
CAS Number:
Molecular Weight:
24.82
EC Number:
MDL number:
UNSPSC Code:
12352302
PubChem Substance ID:
NACRES:
NA.23

Quality Level

Assay

99% trace metals basis

form

nanopowder

avg. part. size

<150 nm (TEM)

density

2.29 g/mL at 25 °C (lit.)

SMILES string

B#N

InChI

1S/BN/c1-2

InChI key

PZNSFCLAULLKQX-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Application

Boron nitride has been well studied for applications including ceramic and polymer nanocomposites. Nanoscale boron nitride is essential for applications at this length scale as the increased surface area resulting in better incorporation in the matrix. BN possesses a number of material properties which increase its utility in machining and coating applications including wear resistance; chemical and thermal stability and wide band gap.

Storage Class Code

13 - Non Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Rosas; G.;
Acta Microscopica, 19(3), 285-290 (2010)
Xiaoxia Li et al.
The Analyst, 144(5), 1777-1788 (2019-01-24)
New types of two-dimensional (2D) boron nitride (BN) were developed as a 2D scaffold material. After modification with ternary deep eutectic solvents (DES, ChCl-caffeic acid-ethylene glycol), the processed BN was applied to the preparation of magnetic molecularly imprinted polymers (MMIPs).
Y Mizuguchi et al.
Physical chemistry chemical physics : PCCP, 17(34), 22090-22096 (2015-08-04)
We have studied the effect of RE substitution on the structure and the local atomic disorder in REO0.5F0.5BiS2 (RE = rare-earth) to understand their correlation with the bulk superconductivity in these materials. The mean RE size, affecting the chemical pressure
Dmitri Golberg et al.
ACS nano, 4(6), 2979-2993 (2010-05-14)
Hexagonal boron nitride (h-BN) is a layered material with a graphite-like structure in which planar networks of BN hexagons are regularly stacked. As the structural analogue of a carbon nanotube (CNT), a BN nanotube (BNNT) was first predicted in 1994;
Sarat K Swain et al.
Carbohydrate polymers, 95(2), 728-732 (2013-05-08)
A series of cellulose based nanobiocomposites (cellulose/BN) were prepared with incorporation of various percentage of nano boron nitride (BN). The interaction between cellulose and boron nitride was studied by Fourier transform infrared spectroscopy (FTIR). The structure of cellulose/BN nanobiocomposites was

Articles

Boron nitride nanotubes (BNNT) are close structural analogs of carbon nanotubes (CNT), which are high aspect ratio nanotubular material, where carbon atoms are alternately substituted by nitrogen and boron atoms.

Novel Graphene‑Based Nanostructures Production, Functionalization, and Engineering

The production of hydrogen by catalytic water splitting is important for a wide range of industries including renewable energy petroleum refining and for the production of methanol and ammonia in the chemical industry.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service