Skip to Content
Merck
All Photos(2)

Key Documents

687502

Sigma-Aldrich

Titanium(IV) isopropoxide

packaged for use in deposition systems

Synonym(s):

TTIP, Tetraisopropyl orthotitanate

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
Ti[OCH(CH3)2]4
CAS Number:
Molecular Weight:
284.22
Beilstein:
3679474
EC Number:
MDL number:
UNSPSC Code:
12352107
PubChem Substance ID:
NACRES:
NA.23

Assay

99.999%

form

liquid

reaction suitability

core: titanium
reagent type: catalyst

refractive index

n20/D 1.464 (lit.)

bp

232 °C (lit.)

mp

14-17 °C (lit.)

density

0.96 g/mL at 20 °C (lit.)

SMILES string

CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C

InChI

1S/4C3H7O.Ti/c4*1-3(2)4;/h4*3H,1-2H3;/q4*-1;+4

InChI key

VXUYXOFXAQZZMF-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Atomic number of base material: 22 Titanium

Application

Novel metal oxide/phosphonate hybrids were formed from titanium(IV) isopropoxide in a two-step sol-gel process. Starting material for barium-strontium-titanate thin films. Used to make porous titanosilicates, potential ion-exchange materials for cleanup of radioactive wastes. Applied in the formation of a heterosupermolecule consisting of a TiO2 nanocrystallite-viologen electron acceptor complex whose light-induced electron transfer has been demonstrated.

Pictograms

FlameExclamation mark

Signal Word

Warning

Hazard Statements

Hazard Classifications

Eye Irrit. 2 - Flam. Liq. 3 - STOT SE 3

Target Organs

Central nervous system

Storage Class Code

3 - Flammable liquids

WGK

WGK 1

Flash Point(F)

105.8 °F - Pensky-Martens closed cup

Flash Point(C)

41 °C - Pensky-Martens closed cup

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Catalytic asymmetric aryl transfer reactions to aldehydes with Grignard reagents as the aryl source.
Yusuke Muramatsu et al.
Chemistry (Weinheim an der Bergstrasse, Germany), 14(34), 10560-10563 (2008-10-31)
Manas K Panda et al.
Dalton transactions (Cambridge, England : 2003), 39(9), 2428-2440 (2010-02-18)
Controlled oxidation of organic sulfides to sulfoxides under ambient conditions has been achieved by a series of titanium isopropoxide complexes that use environmentally benign H(2)O(2) as a primary oxidant. Specifically, the [N,N'-bis(2-oxo-3-R(1)-5-R(2)-phenylmethyl)-N,N'-bis(methylene-R(3))-ethylenediamine]Ti(O(i)Pr)(2) [R(1) = t-Bu, R(2) = Me, R(3) =
Laszlo Sipos et al.
Biomacromolecules, 6(5), 2570-2582 (2005-09-13)
A poly(styrene-b-isobutylene-b-styrene) (SIBS) triblock polymer is employed as the polymer drug carrier for the TAXUS Express2 Paclitaxel-Eluting Coronary Stent system (Boston Scientific Corp.). It has been shown that the release of paclitaxel (PTx) from SIBS can be modulated by modification
Alfred J Wooten et al.
Organic letters, 9(3), 381-384 (2007-01-26)
[reaction: see text] We report the catalytic asymmetric allylation of ketones under highly concentrated reaction conditions with a catalyst generated from titanium tetraisopropoxide and BINOL (1:2 ratio) in the presence of isopropanol. This catalyst promotes the addition of tetraallylstannane to
Henrique Antonio Mendonça Faria et al.
Materials science & engineering. C, Materials for biological applications, 56, 260-268 (2015-08-08)
The structural and electronic properties of titanium oxide nanotubes (TiO2) have attracted considerable attention for the development of therapeutic devices and imaging probes for nanomedicine. However, the fluorescence response of TiO2 has typically been within ultraviolet spectrum. In this study

Articles

In recent years considerable interest in ALD has emerged, mainly due to its ability to controllably coat even very small structures, e.g. nanoor microstructures.

Atomic Layer Deposition (ALD) is a coating technology that allows perfectly conformal deposition onto complex 3D surfaces. The reason for this uniform coating lies in the saturative chemisorption of sequential cycles of precursor vapors.

Nanocomposite Coatings with Tunable Properties Prepared by Atomic Layer Deposition

Since the demonstration of the first practical solar cell 60 years ago, research on novel materials, improved solar cell design and structure, and innovative manufacturing processes have all contributed to a continuous increase in the efficiency of photovoltaic (PV) devices.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service