Skip to Content
Merck
All Photos(2)

Documents

637289

Sigma-Aldrich

Dysprosium(III) oxide

nanopowder, <100 nm particle size, 99.9% trace metals basis

Synonym(s):

Didysprosium trioxide, Dysprosia

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
Dy2O3
CAS Number:
Molecular Weight:
373.00
EC Number:
MDL number:
UNSPSC Code:
12352302
PubChem Substance ID:
NACRES:
NA.23

Assay

99.9% trace metals basis

form

nanopowder

reaction suitability

reagent type: catalyst
core: dysprosium

particle size

<100 nm

density

7.81 g/mL at 25 °C (lit.)

SMILES string

O=[Dy]O[Dy]=O

InChI

1S/2Dy.3O

InChI key

NLQFUUYNQFMIJW-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Storage Class Code

11 - Combustible Solids

WGK

WGK 2

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Y Ni et al.
Guang pu xue yu guang pu fen xi = Guang pu, 21(1), 73-76 (2003-09-05)
The spectral interferences of trace elements from high purity rare earth will seriously affect the analytical accuracy in the ICP-AES analysis. In this work, spectral fitting matrix projection-Kalman filter method was developed and applied to correction of spectral interferences produced
Małgorzata Norek et al.
Journal of the American Chemical Society, 130(15), 5335-5340 (2008-03-22)
The transverse 1H relaxivities of aqueous colloidal solutions of dextran coated Dy2O3 nanoparticles of different sizes were investigated at magnetic field strengths (B) between 7 and 17.6 T. The particle size with the maximum relaxivity (r2) appears to vary between
Masoud Salavati-Niasari et al.
Ultrasonics sonochemistry, 17(5), 870-877 (2010-03-23)
Dysprosium carbonates nanoparticles were synthesized by the reaction of dysprosium acetate and NaHCO(3) by a sonochemical method. Dysprosium oxide nanoparticles with average size about 17 nm were prepared from calcination of Dy(2)(CO(3))(3).1.7H(2)O nanoparticles. Dy(OH)(3) nanotubes were synthesized by sonication of
S E Seltzer et al.
Journal of computer assisted tomography, 5(3), 370-374 (1981-06-01)
We used a stepwise approach to identify, design, synthesize, and test new high atomic number particulate contrast agents that would be especially well suited for use with computed tomography (CT). Our goal was to produce extremely radiopaque compounds with highly
J M Peeters et al.
Physics in medicine and biology, 51(6), N127-N137 (2006-03-03)
Susceptibility markers for passive tracking need to be small in order to maintain the shape and mechanical properties of the endovascular device. Nevertheless, they also must have a high magnetic moment to induce an adequate artefact at a variety of

Articles

Currently, magnetic nanoparticles (MNPs) are attracting a lot of attention because of the possibility of many novel applications, especially in biomedical research.

The application of magnetism and magnetic materials pervades our modern civilization in the form of electrical power, communications and information storage.

Magnetic materials permeate numerous daily activities in our lives. They are essential components of a diversity of products including hard drives that reliably store information on our computers, decorative magnets that keep the shopping list attached to the refrigerator door, electric bicycles that speed our commute to work, as well as wind turbines for conversion of wind energy to electrical power.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service