Saltar al contenido
Merck
  • Quantification of furanic derivatives in fortified wines by a highly sensitive and ultrafast analytical strategy based on digitally controlled microextraction by packed sorbent combined with ultrahigh pressure liquid chromatography.

Quantification of furanic derivatives in fortified wines by a highly sensitive and ultrafast analytical strategy based on digitally controlled microextraction by packed sorbent combined with ultrahigh pressure liquid chromatography.

Journal of chromatography. A (2015-01-27)
Rosa Perestrelo, Catarina L Silva, José S Câmara
RESUMEN

An improved, reliable and powerful analytical strategy based on digitally controlled microextraction by packed sorbent (MEPS) combined with ultrahigh pressure liquid chromatography (UHPLC) was validated for the simultaneous identification and quantification of major furanic derivatives, namely 5-hydroxymethyl-2-furaldehyde (5HMF), 5-methyl-2-furaldehyde (5MF), 2-furaldehyde (2F) and 2-furyl methyl ketone (2FMK), in fortified wines. To enhance the extraction efficiency of the target furanic derivates, several influencing extraction parameters, such as number of loading cycles, nature of elution solvent and elution volume, were evaluated and optimized. In addition the ability of different MEPS sorbent materials, namely C2, C8, C18, SIL, M1, R-AX, R-CX and PGC, were also tested. The optimal analytical conditions involved loading 3×200 μL of wine samples through a C8 sorbent in a MEPS syringe placed in the semi-automatic eVolH syringe followed by elution using 200 μL MeOH:H2O (95:5, v/v). The furanic derivates separation was achieved using a CORTECS UPLC(®) C18 analytical column in an ultrafast chromatographic run (within 4 min). The method performance was assessed for dry/medium dry (D/MD) and sweet/medium sweet (S/MS) model wines in terms of selectivity, linearity, limit of detection (LOD), limit of quantitation (LOQ), accuracy, precision and matrix effect, using model wine matrix-matched calibration. Good linearity was obtained with a regression coefficient (r(2)) higher than 0.992. A good precision was attained (RSD<5%) and low LODs were achieved for D/MD (4.5-129.3 ng L(-1)) and S/MS (6.9-285.2 ng L(-1)) model wines. The quantification limits (LOQ) for D/MD model wines ranged from 14.9 to 431.0 ng L(-1), whereas for S/MS model wines range from 23.1 to 950.5 ng L(-1). The method also afforded satisfactory results in terms of accuracy, ranging from 74 to 97% for D/MD wines and between 84 and 99% for S/MS wines. The MEPS(C8)/UHPLC-PDA analytical strategy was successfully applied to analyze furanic derivates in 26 fortified Madeira wines from different types (D/MD, S/MS) and ages. The obtained results revealed the analytical strategy as a suitable tool which combines sensitivity, effectiveness, reduced analysis time and simple analytical procedure. Principal component analysis (PCA) suggested that fortified wines can be organized based on their age on PC1, which are mainly characterized by 5HMF.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Acetonitrilo, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Metanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Metanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Acetonitrilo, HPLC Plus, ≥99.9%
Sigma-Aldrich
Glicerol, ACS reagent, ≥99.5%
Sigma-Aldrich
Metanol, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Glicerol, for molecular biology, ≥99.0%
Sigma-Aldrich
Ácido fórmico, reagent grade, ≥95%
Sigma-Aldrich
Glicerol, ReagentPlus®, ≥99.0% (GC)
Sigma-Aldrich
Metanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Ácido fórmico, ACS reagent, ≥96%
Sigma-Aldrich
Ácido fórmico, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥98%
Sigma-Aldrich
Acetonitrilo, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetonitrilo, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Metanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Metanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
Metanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Ácido fórmico, puriss., meets analytical specifications of DAC, FCC, 98.0-100%
Sigma-Aldrich
Ácido fórmico, ACS reagent, ≥88%
Sigma-Aldrich
Glicerol solution, 83.5-89.5% (T)
Sigma-Aldrich
Acetonitrilo, anhydrous, 99.8%
Sigma-Aldrich
Metanol, Absolute - Acetone free
Sigma-Aldrich
Metanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Metanol, BioReagent, ≥99.93%
Sigma-Aldrich
Glicerol, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for electrophoresis, ≥99% (GC)
Sigma-Aldrich
Acetonitrilo, suitable for HPLC-GC, ≥99.8% (GC)
Sigma-Aldrich
Glicerol, BioUltra, for molecular biology, anhydrous, ≥99.5% (GC)
Sigma-Aldrich
Glicerol, puriss., anhydrous, 99.0-101.0% (alkalimetric)
Sigma-Aldrich
Metanol, ACS reagent, ≥99.8%
USP
Glicerol, United States Pharmacopeia (USP) Reference Standard