Saltar al contenido
Merck

805203

Sigma-Aldrich

FK 102 Co(III) TFSI salt

Sinónimos:

tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) tri[bis(trifluoromethane)sulfonimide

Iniciar sesiónpara Ver la Fijación de precios por contrato y de la organización


About This Item

Fórmula empírica (notación de Hill):
C30H21CoN12O12S6F18
Peso molecular:
1334.86
UNSPSC Code:
12352103
PubChem Substance ID:
NACRES:
NA.23

assay

98%

Quality Level

form

powder

mp

194-199 °C

SMILES string

O=S([N-]S(=O)(C(F)(F)F)=O)(C(F)(F)F)=O.O=S([N-]S(=O)(C(F)(F)F)=O)(C(F)(F)F)=O.O=S([N-]S(=O)(C(F)(F)F)=O)(C(F)(F)F)=O.N1(C2=NC=CC=C2)N=CC=C1.C3(N4C=CC=N4)=CC=CC=N3.C5(N6C=CC=N6)=CC=CC=N5.[Co+3]

InChI

1S/3C8H7N3.3C2F6NO4S2.Co/c3*1-2-5-9-8(4-1)11-7-3-6-10-11;3*3-1(4,5)14(10,11)9-15(12,13)2(6,7)8;/h3*1-7H;;;;/q;;;3*-1;+3

InChI key

ILXRZLQXWLMDFQ-UHFFFAOYSA-N

General description

FK 102 Co(III) TFSI salt is a cobalt(III) complex that can be used as a p-type dopant to control the type and density of charge carriers in both organic and inorganic semiconductors. The solubility of TFSI allows an increase in the doping potential for hole-conductors in electrochemical devices.

Application

FK 102 Co(III) TFSI salt can be majorly used in the fabrication of dye sensitized solar cells (DSSCs) and perovskite based solar cells (PSCs).
Use this cobalt complexes to increase photovoltages of liquid electrolyte cells substantially or to achieve ultrahigh performance with solid state photovoltaic devices. FK102 cobalt complexes offer guaranteed performance, high reproducibility, consistent results, and are of highest purity. In comparison to triiodide-based redox electrolytes, cobalt complexes in general increase photovoltages and particularly at lower light levels(e.g. for indoor applications), significantly increase device power output.
Recommended use:
In liquid-based electrolytes: typically 0.15-0.2 M of Co(II) and ca. 0.05 M Co(II)
In solid-state photovoltaic cells: up to 10 weight % added to the hole transport material system.

Legal Information

Product of Greatcell Solar Materials Pty Ltd. Greatcell Solar is a registered trademark of Greatcell Solar Materials Pty Ltd.

pictograms

Exclamation mark

signalword

Warning

Hazard Classifications

Eye Irrit. 2 - Skin Irrit. 2 - STOT SE 3

target_organs

Respiratory system

Storage Class

11 - Combustible Solids

wgk_germany

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable


Elija entre una de las versiones más recientes:

Certificados de análisis (COA)

Lot/Batch Number

¿No ve la versión correcta?

Si necesita una versión concreta, puede buscar un certificado específico por el número de lote.

¿Ya tiene este producto?

Encuentre la documentación para los productos que ha comprado recientemente en la Biblioteca de documentos.

Visite la Librería de documentos

Cooperative tin oxide fullerene electron selective layers for high-performance planar perovskite solar cells
Ke W, et al.
Journal of Material Chemistry A, 4(37), 14276-14283 (2016)
Planar heterojunction perovskite solar cell based on CdS electron transport layer
Abulikemu M, et al.
Thin Solid Films, 636(37), 512-518 (2017)
Co (III) complexes as p-dopants in solid-state dye-sensitized solar cells
Burschka J, et al.
Chemistry of Materials, 25(15), 2986-2990 (2013)
Edoardo Mosconi et al.
Journal of the American Chemical Society, 134(47), 19438-19453 (2012-11-02)
We report a combined experimental and computational investigation to understand the nature of the interactions between cobalt redox mediators and TiO(2) surfaces sensitized by ruthenium and organic dyes, and their impact on the performance of the corresponding dye-sensitized solar cells
Julian Burschka et al.
Nature, 499(7458), 316-319 (2013-07-12)
Following pioneering work, solution-processable organic-inorganic hybrid perovskites-such as CH3NH3PbX3 (X = Cl, Br, I)-have attracted attention as light-harvesting materials for mesoscopic solar cells. So far, the perovskite pigment has been deposited in a single step onto mesoporous metal oxide films

Artículos

Next generation solar cells have the potential to achieve conversion efficiencies beyond the Shockley-Queisser (S-Q) limit while also significantly lowering production costs.

For several decades, the need for an environmentally sustainable and commercially viable source of energy has driven extensive research aimed at achieving high efficiency power generation systems that can be manufactured at low cost.

Nuestro equipo de científicos tiene experiencia en todas las áreas de investigación: Ciencias de la vida, Ciencia de los materiales, Síntesis química, Cromatografía, Analítica y muchas otras.

Póngase en contacto con el Servicio técnico