Skip to Content
Merck
All Photos(1)

Key Documents

SML2292

Sigma-Aldrich

CCG-100602

≥98% (HPLC)

Synonym(s):

1-[3,5-Bis(trifluoromethyl)benzoyl]-N-(4-chlorophenyl)-3-piperidinecarboxamide, 1-[3,5-Bis(trifluoromethyl)benzoyl]-N-(4-chlorophenyl)piperidine-3-carboxamide, CCG 100602, CCG100602

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C21H17ClF6N2O2
CAS Number:
Molecular Weight:
478.82
UNSPSC Code:
12352200
NACRES:
NA.77

Assay

≥98% (HPLC)

form

powder

color

white to beige

solubility

DMSO: 2 mg/mL, clear

storage temp.

−20°C

SMILES string

O=C(N1CCCC(C(NC2=CC=C(Cl)C=C2)=O)C1)C3=CC(C(F)(F)F)=CC(C(F)(F)F)=C3

InChI

1S/C21H17ClF6N2O2/c22-16-3-5-17(6-4-16)29-18(31)12-2-1-7-30(11-12)19(32)13-8-14(20(23,24)25)10-15(9-13)21(26,27)28/h3-6,8-10,12H,1-2,7,11H2,(H,29,31)

Biochem/physiol Actions

CCG-100602 aids in preventing fibrosis around the temporomandibular joint (TMJ).
CCG-100602 is a CCG-1423 analog with significantly less cytotoxicity (0/14% WST-1 inhibition by 10/100 μM CCG-100602 vs. 44% by 10 μM CCG-1423) and similar efficacy against Rho/MKL1/SRF pathway-mediated transcription (by 78% with 100 μM CCG-100602 vs. 74% with 10 μM CCG-1423; IC50 = 9.8 μM/CCG-100602 vs. 1.5 μM/CCG-1423; by PC-3 SRE-luciferase assay), albeit at a reduced potency. CCG-100602 reduces the stiffening of spontaneously hypertensive rats (SHR) derived aortic VSMCs (1.12 μM) by inhibiting SRF/myocardin interaction and abrogates the increased aortic wall stiffness in SHR rats in vivo (7.5 mg/kg/d via s.c. osmotic pumps for 2 wks).

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Sorry, we don't have COAs for this product available online at this time.

If you need assistance, please contact Customer Support.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Jessica L Bell et al.
Bioorganic & medicinal chemistry letters, 23(13), 3826-3832 (2013-05-28)
CCG-1423 (1) is a novel inhibitor of Rho/MKL1/SRF-mediated gene transcription that inhibits invasion of PC-3 prostate cancer cells in a Matrigel model of metastasis. We recently reported the design and synthesis of conformationally restricted analogs (e.g., 2) with improved selectivity
Laura A Johnson et al.
Inflammatory bowel diseases, 20(1), 154-165 (2013-11-28)
Ras homolog gene family, member A (RhoA)/Rho-associated coiled-coil forming protein kinase signaling is a key pathway in multiple types of solid organ fibrosis, including intestinal fibrosis. However, the pleiotropic effects of RhoA/Rho-associated coiled-coil forming protein kinase signaling have frustrated targeted
Ning Zhou et al.
Cardiovascular research, 113(2), 171-182 (2016-12-23)
Increased aortic stiffness is a fundamental manifestation of hypertension. However, the molecular mechanisms involved remain largely unknown. We tested the hypothesis that abnormal intrinsic vascular smooth muscle cell (VSMC) mechanical properties in large arteries, but not in distal arteries, contribute
Chris R Evelyn et al.
Bioorganic & medicinal chemistry letters, 20(2), 665-672 (2009-12-08)
We recently identified bis(amide) CCG-1423 (1) as a novel inhibitor of RhoA/C-mediated gene transcription that is capable of inhibiting invasion of PC-3 prostate cancer cells in a Matrigel model of metastasis. An initial structure-activity relationship study focusing on bioisosteric replacement
Konstantin Tsoyi et al.
American journal of respiratory cell and molecular biology, 58(2), 208-215 (2017-09-09)
Radiation-induced pulmonary fibrosis is a severe complication of patients treated with thoracic irradiation. We have previously shown that syndecan-2 reduces fibrosis by exerting alveolar epithelial cytoprotective effects. Here, we investigate whether syndecan-2 attenuates radiation-induced pulmonary fibrosis by inhibiting fibroblast activation.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service