Skip to Content
Merck
  • Aminoacetone oxidase from Streptococcus oligofermentans belongs to a new three-domain family of bacterial flavoproteins.

Aminoacetone oxidase from Streptococcus oligofermentans belongs to a new three-domain family of bacterial flavoproteins.

The Biochemical journal (2014-10-01)
Gianluca Molla, Marco Nardini, Paolo Motta, Paola D'Arrigo, Walter Panzeri, Loredano Pollegioni
ABSTRACT

The aaoSo gene from Streptococcus oligofermentans encodes a 43 kDa flavoprotein, aminoacetone oxidase (SoAAO), which was reported to possess a low catalytic activity against several different L-amino acids; accordingly, it was classified as an L-amino acid oxidase. Subsequently, SoAAO was demonstrated to oxidize aminoacetone (a pro-oxidant metabolite), with an activity ~25-fold higher than the activity displayed on L-lysine, thus lending support to the assumption of aminoacetone as the preferred substrate. In the present study, we have characterized the SoAAO structure-function relationship. SoAAO is an FAD-containing enzyme that does not possess the classical properties of the oxidase/dehydrogenase class of flavoproteins (i.e. no flavin semiquinone formation is observed during anaerobic photoreduction as well as no reaction with sulfite) and does not show a true L-amino acid oxidase activity. From a structural point of view, SoAAO belongs to a novel protein family composed of three domains: an α/β domain corresponding to the FAD-binding domain, a β-domain partially modulating accessibility to the coenzyme, and an additional α-domain. Analysis of the reaction products of SoAAO on aminoacetone showed 2,5-dimethylpyrazine as the main product; we propose that condensation of two aminoacetone molecules yields 3,6-dimethyl-2,5-dihydropyrazine that is subsequently oxidized to 2,5-dimethylpyrazine. The ability of SoAAO to bind two molecules of the substrate analogue O-methylglycine ligand is thought to facilitate the condensation reaction. A specialized role for SoAAO in the microbial defence mechanism related to aminoacetone catabolism through a pathway yielding dimethylpyrazine derivatives instead of methylglyoxal can be proposed.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Glycerol solution, 83.5-89.5% (T)
Sigma-Aldrich
Glycine, puriss. p.a., reag. Ph. Eur., buffer substance, 99.7-101% (calc. to the dried substance)
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Glycine, ACS reagent, ≥98.5%
Supelco
Glycine, analytical standard, for nitrogen determination according to Kjeldahl method
Sigma-Aldrich
Glycine, tested according to Ph. Eur.
Sigma-Aldrich
Glycine, BioUltra, for molecular biology, ≥99.0% (NT)
Supelco
Methanol, analytical standard
Sigma-Aldrich
Glycine, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, ≥98.5%
Sigma-Aldrich
Glycine, BioXtra, ≥99% (titration)
Sigma-Aldrich
Glycine, suitable for electrophoresis, ≥99%
Sigma-Aldrich
Glycine, ReagentPlus®, ≥99% (HPLC)
SAFC
Glycine
Supelco
Glycine, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Methanol, NMR reference standard
Supelco
Glycine, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Glycine, meets analytical specification of Ph. Eur., BP, USP, 99-101% (based on anhydrous substance)
Supelco
Glycine hydrochloride solution, 100 mM amino acid in 0.1 M HCl, analytical standard
Sigma-Aldrich
Pyruvaldehyde solution, 40 wt. % in H2O
Sigma-Aldrich
Glycine methyl ester hydrochloride, 99%
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Acetone, natural, ≥97%
Sigma-Aldrich
Glycine, 99%, FCC
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride, BioUltra, for molecular biology, ≥99.5% (AT)