콘텐츠로 건너뛰기
Merck
  • Extending an in vitro panel for estrogenicity testing: the added value of bioassays for measuring antiandrogenic activities and effects on steroidogenesis.

Extending an in vitro panel for estrogenicity testing: the added value of bioassays for measuring antiandrogenic activities and effects on steroidogenesis.

Toxicological sciences : an official journal of the Society of Toxicology (2014-06-15)
Si Wang, Jeroen C W Rijk, Harrie T Besselink, René Houtman, Ad A C M Peijnenburg, Abraham Brouwer, Ivonne M C M Rietjens, Toine F H Bovee
초록

In the present study, a previously established integrated testing strategy (ITS) for in vitro estrogenicity testing was extended with additional in vitro assays in order to broaden its sensitivity to different modes of action resulting in apparent estrogenicity, i.e., other than estrogen receptor (ER) binding. To this end, an extra set of 10 estrogenic compounds with modes of action in part different from ER binding, were tested in the previously defined ITS, consisting of a yeast estrogen reporter gene assay, an U2OS ERα CALUX reporter gene assay and a cell-free coregulator binding assay. Two androgen reporter gene assays and the enhanced H295R steroidogenesis assay were added to that previous defined ITS. These assays had added value, as several estrogenic model compounds also elicited clear and potent antiandrogenic properties and in addition also showed effects on steroidogenesis that might potentiate their apparent estrogenic effects in vivo. Adding these assays, examining mechanisms of action for estrogenicity apart from ERα binding, gives a more complete and comprehensive assessment of the ability of test compounds to interfere with endocrine signaling. It was concluded that the extended ITS will go beyond in vivo estrogenicity testing by the uterotrophic assay, thereby contributing to the 3R-principles.

MATERIALS
제품 번호
브랜드
제품 설명

Sigma-Aldrich
Acetic acid, for luminescence, BioUltra, ≥99.5% (GC)
Supelco
Acetic acid, analytical standard
Sigma-Aldrich
Acetic acid, ≥99.5%, FCC, FG
Sigma-Aldrich
Acetic acid, natural, ≥99.5%, FG
Sigma-Aldrich
Ethyl alcohol, Pure 190 proof, for molecular biology
USP
Dehydrated Alcohol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Triethylamine, ≥99%
Sigma-Aldrich
trans-Dehydroandrosterone, ≥99%
Sigma-Aldrich
Sodium bicarbonate, BioXtra, 99.5-100.5%
Sigma-Aldrich
Hydrocortisone, ≥98% (HPLC)
Sigma-Aldrich
Progesterone, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Sodium bicarbonate, powder, BioReagent, for molecular biology, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
Hydrocortisone, γ-irradiated, powder, BioXtra, suitable for cell culture
Sigma-Aldrich
Estrone, ≥99%
Sigma-Aldrich
Flutamide
Sigma-Aldrich
Corticosterone, ≥92%
Sigma-Aldrich
Diethylstilbestrol, ≥99% (HPLC)
Sigma-Aldrich
Hydrocortisone, BioReagent, suitable for cell culture
Sigma-Aldrich
Triethylamine, ≥99.5%
Sigma-Aldrich
Progesterone, γ-irradiated, BioXtra, suitable for cell culture
Sigma-Aldrich
Progesterone, ≥99%
Sigma-Aldrich
Hydrocortisone, meets USP testing specifications
Sigma-Aldrich
Progesterone, meets USP testing specifications
Sigma-Aldrich
Tetrahydrofuran, anhydrous, contains 250 ppm BHT as inhibitor, ≥99.9%
Supelco
Methanol, analytical standard
Supelco
Tetrahydrofuran, Selectophore, ≥99.5%
Supelco
Tetrahydrofuran, analytical standard
Sigma-Aldrich
Triethylamine, puriss. p.a., ≥99.5% (GC)
Supelco
Vinclozolin, PESTANAL®, analytical standard