콘텐츠로 건너뛰기
Merck
  • EGFR-AKT-mTOR activation mediates epiregulin-induced pleiotropic functions in cultured osteoblasts.

EGFR-AKT-mTOR activation mediates epiregulin-induced pleiotropic functions in cultured osteoblasts.

Molecular and cellular biochemistry (2014-09-17)
Jian-Bo Fan, Wei Liu, Xin-Hui Zhu, Kun Yuan, Da-Wei Xu, Jia-Jia Chen, Zhi-Ming Cui
초록

Epidermal growth factor (EGF) receptor (EGFR) emerges as an essential molecule for the regulating of osteoblast cellular functions. In the current study, we explored the effect of epiregulin, a new EGFR ligand, on osteoblast functions in vitro, and studied the underlying mechanisms. We found that epiregulin-induced EGFR activation in both primary osteoblasts and osteoblast-like MC3T3-E1 cells. Meanwhile, epiregulin activated AKT-mammalian target of rapamycin (mTOR) and Erk-mitogen-activated protein kinase (MAPK) signalings in cultured osteoblasts, which were blocked by EGFR inhibitor AG1478 or monoclonal antibody against EGFR (anti-EGFR). Further, in primary and MC3T3-E1 osteoblasts, epiregulin promoted cell proliferation and increased alkaline phosphatase activity, while inhibiting dexamethasone (Dex)-induced cell death. Such effects by epiregulin were largely inhibited by AG1478 or anti-EGFR. Notably, AKT-mTOR inhibitors, but not Erk inhibitors, alleviated epiregulin-induced above pleiotropic functions in osteoblasts. Meanwhile, siRNA depletion of Sin1, a key component of mTOR complex 2 (mTORC2), also suppressed epiregulin-exerted effects in MC3T3-E1 cells. Together, these results suggest that epiregulin-induced pleiotropic functions in cultured osteoblasts are mediated through EGFR-AKT-mTOR signalings.

MATERIALS
제품 번호
브랜드
제품 설명

Supelco
Rapamycin, VETRANAL®, analytical standard
Sigma-Aldrich
Rapamycin, Ready Made Solution, 2.5 mg/mL in DMSO (2.74 mM), from Streptomyces hygroscopicus
SAFC
Epiregulin from mouse, recombinant, expressed in E. coli, lyophilized powder, suitable for cell culture