콘텐츠로 건너뛰기
Merck
  • The Metastable XBP1u Transmembrane Domain Defines Determinants for Intramembrane Proteolysis by Signal Peptide Peptidase.

The Metastable XBP1u Transmembrane Domain Defines Determinants for Intramembrane Proteolysis by Signal Peptide Peptidase.

Cell reports (2019-03-14)
Sara Suna Yücel, Walter Stelzer, Alessandra Lorenzoni, Manfred Wozny, Dieter Langosch, Marius K Lemberg
초록

Unspliced XBP1 mRNA encodes XBP1u, the transcriptionally inert variant of the unfolded protein response (UPR) transcription factor XBP1s. XBP1u targets its mRNA-ribosome-nascent-chain-complex to the endoplasmic reticulum (ER) to facilitate UPR activation and prevents overactivation. Yet, its membrane association is controversial. Here, we use cell-free translocation and cellular assays to define a moderately hydrophobic stretch in XBP1u that is sufficient to mediate insertion into the ER membrane. Mutagenesis of this transmembrane (TM) region reveals residues that facilitate XBP1u turnover by an ER-associated degradation route that is dependent on signal peptide peptidase (SPP). Furthermore, the impact of these mutations on TM helix dynamics was assessed by residue-specific amide exchange kinetics, evaluated by a semi-automated algorithm. Based on our results, we suggest that SPP-catalyzed intramembrane proteolysis of TM helices is not only determined by their conformational flexibility, but also by side-chain interactions near the scissile peptide bond with the enzyme's active site.

MATERIALS
제품 번호
브랜드
제품 설명

Millipore
ANTI-FLAG® High Sensitivity, M2 coated 96-well plates, 96-well, clear, polystyrene, flat bottom plate