추천 제품
생물학적 소스
human
재조합
expressed in E. coli
분석
≥90% (SDS-PAGE)
형태
aqueous solution
분자량
113.8 kDa
포장
pkg of 100 μg
기술
cell based assay: suitable
solubility
water: soluble
배송 상태
dry ice
저장 온도
−70°C
유전자 정보
human ... HIST1H2BG(8339) , HIST2H2AC(8338) , HIST3H3(8290) , HIST4H4(121504)
일반 설명
Human recombinant histone octamer consisting of 2 molecules each of histones H2A (GenBank Accession No. NM_033445) amino acids 2-130(end) with a N-terminal His-tag, H2B (GenBank Accession No. NM_003528) amino acids 2-126(end) with a N-terminal His-tag, H3 (GenBank Accession No. NM_003532) amino acids 2-137(end) with a N-terminal His-tag, and H4 (GenBank Accession No. NM_003548) amino acids 2-103(end) with a N-terminal His-tag, expressed in an E. coli expression system.
Research Area: Cell Signaling
The histone octamer is a versatile protein assembly that has evolved to serve two opposing functions within the cell. It is required to bind and bend DNA to achieve fivefold compaction and partial charge neutralization of DNA, while also needing to release specific segments of DNA in a coordinated manner to allow the access of DNA-processing enzymes at the appropriate time. A modular assembly of histone dimers (consisting of either H2A and H2B or H3 and H4) binds to approximately 30 bp of DNA and is connected in a flexible yet stable manner to form a fundamental superhelical ′ramp′ with evenly spaced DNA-binding platforms.
The histone octamer is a versatile protein assembly that has evolved to serve two opposing functions within the cell. It is required to bind and bend DNA to achieve fivefold compaction and partial charge neutralization of DNA, while also needing to release specific segments of DNA in a coordinated manner to allow the access of DNA-processing enzymes at the appropriate time. A modular assembly of histone dimers (consisting of either H2A and H2B or H3 and H4) binds to approximately 30 bp of DNA and is connected in a flexible yet stable manner to form a fundamental superhelical ′ramp′ with evenly spaced DNA-binding platforms.
애플리케이션
Histone Octamer full length human has been used to incubate with 12-mesyloxy-NVP along with recombinant human histone H4 to investigate the potential of histones as targets for covalent adduct formation by drug-derived electrophiles.
생화학적/생리학적 작용
The nuclear DNA in eukaryotes is found to be associated with histones to form a compact complex called nucleosome. Histones neutralize the electrostatic nature of DNA and function as scaffolding proteins. Each core nucleosome contains two copies each of the core histones H2A, H2B, H3, and H4 to form an octameric complex. This octameric complex contains a central (H3-H4)2 tetramer flanked on both sides with H2A-H2B dimers. The octamer complex function in various stages of chromosome function, chromatin assembly and nucleosome formation. The histone dimer-tetramer interactions are also important in RNA transcription.
Storage Class Code
10 - Combustible liquids
WGK
WGK 1
Flash Point (°F)
Not applicable
Flash Point (°C)
Not applicable
시험 성적서(COA)
제품의 로트/배치 번호를 입력하여 시험 성적서(COA)을 검색하십시오. 로트 및 배치 번호는 제품 라벨에 있는 ‘로트’ 또는 ‘배치’라는 용어 뒤에서 찾을 수 있습니다.
Biochemical Society transactions, 40(2), 370-376 (2012-03-23)
Inherited or acquired defects in detecting, signalling or repairing DNA damage are associated with various human pathologies, including immunodeficiencies, neurodegenerative diseases and various forms of cancer. Nuclear DNA is packaged into chromatin and therefore the true in vivo substrate of
Annals of botany, 108(7), 1235-1246 (2011-09-08)
In eukaryotes, chromatin remodelling complexes are shown to be responsible for nucleosome mobility, leading to increased accessibility of DNA for DNA binding proteins. Although the existence of such complexes in plants has been surmised mainly at the genetic level from
The nucleosomal core histone octamer at 3.1 A resolution: a tripartite protein assembly and a left-handed superhelix.
Proceedings of the National Academy of Sciences of the USA, 88, 10148-10152 (1991)
Histone octamer function in vivo: mutations in the dimer-tetramer interfaces disrupt both gene activation and repression.
The Embo Journal, 16, 2493-2506 (1997)
자사의 과학자팀은 생명 과학, 재료 과학, 화학 합성, 크로마토그래피, 분석 및 기타 많은 영역을 포함한 모든 과학 분야에 경험이 있습니다..
고객지원팀으로 연락바랍니다.