추천 제품
분자량
Mp 3,000
Quality Level
반응 적합성
reagent type: cross-linking reagent
Ω-끝
hydroxyl
α-끝
amine
SMILES string
[H]OCCN
일반 설명
O-(2-Aminoethyl)polyethylene glycol is a heterobifunctional polyethylene glycol (hydroxyl-PEG-amine) useful in conjugation and crosslinking reactions.
애플리케이션
O-(2-Aminoethyl)polyethylene glycol has been used to synthesize PEG-poly(D,L-lactide-co-glycolide) (PEG-PLGA) conjugate for use in the synthesis of PLGA-based nanoparticles.
Storage Class Code
11 - Combustible Solids
WGK
WGK 3
Flash Point (°F)
Not applicable
Flash Point (°C)
Not applicable
개인 보호 장비
Eyeshields, Gloves, type N95 (US)
이미 열람한 고객
Macromolecules, 43(24), 10326-10335 (2011-05-03)
Graft-through ring-opening metathesis polymerization (ROMP) using ruthenium N-heterocyclic carbene catalysts has enabled the synthesis of bottle-brush polymers with unprecedented ease and control. Here we report the first bivalent-brush polymers; these materials were prepared by graft-through ROMP of drug-loaded polyethylene-glycol (PEG)
ACS macro letters, 3(9), 854-857 (2014-09-23)
A panel of acid-labile bis-norbornene cross-linkers was synthesized and evaluated for the formation of acid-degradable brush-arm star polymers (BASPs) via the brush-first ring-opening metathesis polymerization (ROMP) method. An acetal-based cross-linker was identified that, when employed in conjunction with a poly(ethylene
Folic acid-decorated and PEGylated PLGA nanoparticles for improving the antitumour activity of 5-fluorouracil.
International Journal of Pharmaceutics, 516(1-2), 61-70 (2017)
Macromolecular rapid communications, 35(2), 168-173 (2013-11-23)
This report describes the synthesis of miktoarm brush-arm star polymers (BASPs) from branched and linear norbornene-terminated macromonomers (MMs) via the brush-first ring-opening metathesis polymerization (ROMP) method. First, a polystyrene (PS)-branch-poly(lactic acid) (PLA) MM is synthesized via a combination of atom
Journal of the American Chemical Society, 133(3), 559-566 (2010-12-15)
The combination of highly efficient polymerizations with modular "click" coupling reactions has enabled the synthesis of a wide variety of novel nanoscopic structures. Here we demonstrate the facile synthesis of a new class of clickable, branched nanostructures, polyethylene glycol (PEG)-branch-azide
자사의 과학자팀은 생명 과학, 재료 과학, 화학 합성, 크로마토그래피, 분석 및 기타 많은 영역을 포함한 모든 과학 분야에 경험이 있습니다..
고객지원팀으로 연락바랍니다.