콘텐츠로 건너뛰기
Merck
모든 사진(3)

Key Documents

F6129

Sigma-Aldrich

Iron(III) citrate

technical grade

동의어(들):

Ferric citrate, Iron(III) citrate, Iron(III) citrate hydrate

로그인조직 및 계약 가격 보기


About This Item

실험식(Hill 표기법):
C6H5FeO7
CAS Number:
Molecular Weight:
244.94
EC Number:
MDL number:
UNSPSC 코드:
12352302
PubChem Substance ID:
NACRES:
NA.23

Grade

technical grade

Quality Level

형태

powder

구성

Fe, 16.5-18.5%

기술

cell culture | mammalian: suitable

응용 분야

battery manufacturing

SMILES string

OC12CC(=O)O[Fe](OC(=O)C1)OC2=O

InChI

1S/C6H8O7.Fe/c7-3(8)1-6(13,5(11)12)2-4(9)10;/h13H,1-2H2,(H,7,8)(H,9,10)(H,11,12);/q;+3/p-3

InChI key

NPFOYSMITVOQOS-UHFFFAOYSA-K

유사한 제품을 찾으십니까? 방문 제품 비교 안내

일반 설명

Iron(III) citrate technical grade is a brown to dark orangepowder. It is soluble in water, but insoluble in most organics includingalcohols. The powder is sensitive to light; like many iron carboxylates, bluelight photo-reduces iron(III) citrate, forming the Fe2+ ion andconcomitantly oxidizing the carboxyl group to yield carbon dioxide. Iron(III)citrate thermally decomposes to α-Fe2O3 at 460 °C.

애플리케이션

Iron(III) citrate is a synthetic precursor for iron-containing compounds. It is commonly used to prepare Fe3O4 nanoparticles or Fe3O4-nanocomposites by hydrothermal methods and Fe2O3 materials by thermal decomposition and sol-gel processing. Iron(III) citrate is well-suited to sol-gel processing because of its high solubility in water and low solubility inorganic phases. Consequently, iron(III) citrate is an important precursor in the synthesis of iron-doped and iron-containing metal oxides studied for lithium-ion battery cathodes.

It can also be used in the degradation of tetracycline for the treatment of polluted water.

Storage Class Code

11 - Combustible Solids

WGK

WGK 2

Flash Point (°F)

Not applicable

Flash Point (°C)

Not applicable

개인 보호 장비

Eyeshields, Gloves, type N95 (US)


시험 성적서(COA)

제품의 로트/배치 번호를 입력하여 시험 성적서(COA)을 검색하십시오. 로트 및 배치 번호는 제품 라벨에 있는 ‘로트’ 또는 ‘배치’라는 용어 뒤에서 찾을 수 있습니다.

이 제품을 이미 가지고 계십니까?

문서 라이브러리에서 최근에 구매한 제품에 대한 문서를 찾아보세요.

문서 라이브러리 방문

P Senthil Kumar et al.
ACS omega, 3(3), 3036-3044 (2018-07-20)
Pristine trivanadate (LiV3O8) and doped lithium trivanadate (LiV3-x M x O8, M = Zn/Co/Fe/Sn/Ti/Zr/Nb/Mo, x = 0.01/0.05/0.1 M) compounds were prepared by a simple reflux method in the presence of the polymer, Pluronic P123, as the chelating agent. For comparison
Jianguo Guan et al.
Chemical communications (Cambridge, England), 46(35), 6605-6607 (2010-08-18)
We present a simple and effective heterogeneous contraction method to fabricate hollow spheres with controllable interior structures (ranging from solid, simple hollow to core-in-hollow-wall, double-wall hollow and core-in-double-hollow-wall spheres) by a non-equilibrium heat-treatment process of gel precursors with a high
Petra Vukosav et al.
Analytica chimica acta, 745, 85-91 (2012-09-04)
A detailed study of iron (III)-citrate speciation in aqueous solution (θ=25°C, I(c)=0.7 mol L(-1)) was carried out by voltammetric and UV-vis spectrophotometric measurements and the obtained data were used for reconciled characterization of iron (III)-citrate complexes. Four different redox processes
Marvin Sinsakul et al.
Nephron. Clinical practice, 121(1-2), c25-c29 (2012-10-19)
A phase II open-label study was conducted in hemodialysis patients evaluating the short-term safety, tolerability, and iron absorption with ferric citrate when used as a phosphate binder. Enrollment occurred in two periods. Period 1 recruited patients taking 6-15 pills/day of
Hiroaki Ito et al.
The journal of physical chemistry. A, 115(21), 5371-5379 (2011-05-13)
The kinetics of ligand exchange between ferric citrate and desferrioxamine B (DFB) was investigated at pH 8.0 and high citrate/Fe molar ratios (500-5000) with particular attention given to understanding the precise mechanism of ligand exchange. Ferric citrate complexes present in

문서

Plasmonic nanoparticles have unique optical properties that can be tailored to suit a variety of applications in the biotechnology1–8 and electronics9–16 industries.

Plasmonic nanoparticles have unique optical properties that can be tailored to suit a variety of applications in the biotechnology1–8 and electronics9–16 industries.

자사의 과학자팀은 생명 과학, 재료 과학, 화학 합성, 크로마토그래피, 분석 및 기타 많은 영역을 포함한 모든 과학 분야에 경험이 있습니다..

고객지원팀으로 연락바랍니다.