추천 제품
설명
Band gap: 1.9 eV
양식
particles
분자량
Mw 80,000-200,000 g/mol by GPC
색상
Fine
solubility
chlorobenzene: soluble
chloroform: soluble
dichlorobenzene: soluble
오비탈 에너지
HOMO -5.5 eV
LUMO -3.6 eV
PDI
2‑4
애플리케이션
High-Efficiency Organic Solar Cells (OPVs)
Polymeric donor material
LUMO=−3.6 eV
HOMO=−5.5 eV
OPV Device Performance:
PBDB-T-2F: ITIC-F (1:1 w/w)
Voc= 0.84V
Jsc= 22.2 mA/cm2
FF= 0.725
PCE=13.5%
PBDB-T-2F (or PM6) is a wide bandgap polymer donor (n-type semiconductor) containing fluorinated thienyl benzodithiophene (BDT-2F) used in high performance polymer solar cells (PSCs). PBDB-T-2F possesses high crystallinity and strong π-π stacking alignment, which are favourable to charge carrier transport and hence suppress recombination in devices. PBDBT-2F based PSCs were reported to have thickness and area insensitive performance and is a promising candidate for large-scale roll-to-roll manufacturing of high-efficiency polymer solar cells.
For example, recently, new study have shown PBDB-T-2F:IT-4F(Sigma Aldrich Cat. No. 901423) based PSCs yielded an impressive PCE of 13.5% due to the synergistic effect of fluorination on both donor and acceptor, which is among the highest values recorded in the literatures for PSCs to date [1]. The PBDB-T-2F:IT-4F baed PSCs also showed good storage, thermal and illumination stabilities with respect to the efficiency. High efficiency of >11% was maintained for a wide range of film area and thickness. When paired with selenopheno[3,2-b]thiophene-based narrow-bandgap non-fullerene acceptor, an impressive efficiency of 13.3 % was obtained with thickness-insensitive feature.
It has also been previously reported, PBDB-T-2F when paired with narrow band-gap small molecule acceptor 2,2′-((2Z,2′Z)-((4,4,9,9-tetrahexyl-4,9-dihydro-s-indaceno[1,2-b:5,6-b′]dithiophene-2,7-diyl)bis(methanylylidene))bis(3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (IDIC), the as-cast film (without extra treatments) showed an outstanding power conversion efficiency (PCE) of 11.9%, a record value for as-cast polymer solar cells. Moreover, the performance of PBDB-T-2F:IDIC based devices is insensitive to the active layer thickness (≅95-255 nm) and device area (0.20-0.81 cm2), and thus is a promising candidate for future roll-to-roll mass manufacturing and practical application of highly efficient PSCs.
It has also been reported, PBDB-T-2F possesses a strong absorption in the short wavelength region of 300-685 nm with a large bandgap of 1.80 eV, which is complementary to that of ITIC (1.55 eV) and facilitates achieving high short-circuit current (Jsc) in PSCs. Moreover, PBDB-T-2F shows a deep HOMO level of −5.50 eV, a strong crystallinity and a dominant face on packing, which helps to achieve a high open-circuit voltage (Voc) and fill factor (FF) in PSCs.
Polymeric donor material
LUMO=−3.6 eV
HOMO=−5.5 eV
OPV Device Performance:
PBDB-T-2F: ITIC-F (1:1 w/w)
Voc= 0.84V
Jsc= 22.2 mA/cm2
FF= 0.725
PCE=13.5%
PBDB-T-2F (or PM6) is a wide bandgap polymer donor (n-type semiconductor) containing fluorinated thienyl benzodithiophene (BDT-2F) used in high performance polymer solar cells (PSCs). PBDB-T-2F possesses high crystallinity and strong π-π stacking alignment, which are favourable to charge carrier transport and hence suppress recombination in devices. PBDBT-2F based PSCs were reported to have thickness and area insensitive performance and is a promising candidate for large-scale roll-to-roll manufacturing of high-efficiency polymer solar cells.
For example, recently, new study have shown PBDB-T-2F:IT-4F(Sigma Aldrich Cat. No. 901423) based PSCs yielded an impressive PCE of 13.5% due to the synergistic effect of fluorination on both donor and acceptor, which is among the highest values recorded in the literatures for PSCs to date [1]. The PBDB-T-2F:IT-4F baed PSCs also showed good storage, thermal and illumination stabilities with respect to the efficiency. High efficiency of >11% was maintained for a wide range of film area and thickness. When paired with selenopheno[3,2-b]thiophene-based narrow-bandgap non-fullerene acceptor, an impressive efficiency of 13.3 % was obtained with thickness-insensitive feature.
It has also been previously reported, PBDB-T-2F when paired with narrow band-gap small molecule acceptor 2,2′-((2Z,2′Z)-((4,4,9,9-tetrahexyl-4,9-dihydro-s-indaceno[1,2-b:5,6-b′]dithiophene-2,7-diyl)bis(methanylylidene))bis(3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (IDIC), the as-cast film (without extra treatments) showed an outstanding power conversion efficiency (PCE) of 11.9%, a record value for as-cast polymer solar cells. Moreover, the performance of PBDB-T-2F:IDIC based devices is insensitive to the active layer thickness (≅95-255 nm) and device area (0.20-0.81 cm2), and thus is a promising candidate for future roll-to-roll mass manufacturing and practical application of highly efficient PSCs.
It has also been reported, PBDB-T-2F possesses a strong absorption in the short wavelength region of 300-685 nm with a large bandgap of 1.80 eV, which is complementary to that of ITIC (1.55 eV) and facilitates achieving high short-circuit current (Jsc) in PSCs. Moreover, PBDB-T-2F shows a deep HOMO level of −5.50 eV, a strong crystallinity and a dominant face on packing, which helps to achieve a high open-circuit voltage (Voc) and fill factor (FF) in PSCs.
PBDB-T-2F can be used as the active semiconductor layer in OFET devices. PBDB-T-2F can serve as the donor material in the photoactive layer of OPV devices. It exhibits abroad absorption spectrum, allowing it to absorb light across a wide range of wavelengths, including visible and near-infrared regions.
Storage Class Code
11 - Combustible Solids
WGK
WGK 3
Flash Point (°F)
Not applicable
Flash Point (°C)
Not applicable
가장 최신 버전 중 하나를 선택하세요:
이미 열람한 고객
Advanced materials (Deerfield Beach, Fla.), 27(31), 4655-4660 (2015-07-15)
A new copolymer PM6 based on fluorothienyl-substituted benzodithiophene is synthesized and characterized. The inverted polymer solar cells based on PM6 exhibit excellent performance with Voc of 0.98 V and power conversion efficiency (PCE) of 9.2% for a thin-film thickness of
Advanced materials (Deerfield Beach, Fla.), 30(6) (2017-12-14)
In this work, a nonfullerene polymer solar cell (PSC) based on a wide bandgap polymer donor PM6 containing fluorinated thienyl benzodithiophene (BDT-2F) unit and a narrow bandgap small molecule acceptor 2,2'-((2Z,2'Z)-((4,4,9,9-tetrahexyl-4,9-dihydro-s-indaceno[1,2-b:5,6-b']dithiophene-2,7-diyl)bis(methanylylidene))bis(3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (IDIC) is developed. In addition to matched energy levels
Synergistic effect of fluorination on both donor and acceptor materials for high performance non-fullerene polymer solar cells with 13.5 % efficiency
Science China: Chemistry, 61(5), 531-537 (2018)
Selenopheno[3,2-b]thiophene-Based Narrow-Bandgap Nonfullerene Acceptor Enabling 13.3 % Efficiency for Organic Solar Cells with Thickness-Insensitive Feature
ACS Energy Letters, 3(12), 2967-2976 (2018)
High-performance nonfullerene polymer solar cells based on a fluorinated wide bandgap copolymer with a high open-circuit voltage of 1.04 V
Journal of Material Chemistry A, 5(42), 22180-22185 (2017)
문서
Professor Chen (Nankai University, China) and his team explain the strategies behind their recent record-breaking organic solar cells, reaching a power conversion efficiency of 17.3%.
자사의 과학자팀은 생명 과학, 재료 과학, 화학 합성, 크로마토그래피, 분석 및 기타 많은 영역을 포함한 모든 과학 분야에 경험이 있습니다..
고객지원팀으로 연락바랍니다.