콘텐츠로 건너뛰기
Merck
모든 사진(1)

Key Documents

685801

Sigma-Aldrich

16-Phosphonohexadecanoic acid

97%

로그인조직 및 계약 가격 보기


About This Item

실험식(Hill 표기법):
C16H33O5P
CAS Number:
Molecular Weight:
336.40
MDL number:
UNSPSC 코드:
12352103
PubChem Substance ID:
NACRES:
NA.23

분석

97%

형태

solid

mp

129-133 °C

SMILES string

OC(=O)CCCCCCCCCCCCCCCP(O)(O)=O

InChI

1S/C16H33O5P/c17-16(18)14-12-10-8-6-4-2-1-3-5-7-9-11-13-15-22(19,20)21/h1-15H2,(H,17,18)(H2,19,20,21)

InChI key

JVXYHUCXFLBBGA-UHFFFAOYSA-N

일반 설명

16-Phosphonohexadecanoic acid (16-PA) is an alkyl phosphonic acid that forms a self-assembled monolayer (SAM). It yields a close packed pattern with densely arranged alkyl groups. These SAMs are robust and stable in aqueous solutions over a wide pH range.

애플리케이션

16-PA can be used as an anti-corrosive coating by forming a SAM on metal oxide surfaces for potential use in biomedical applications. It can also be deposited on indium oxide (ITO) substrates for the immobilization of surface atoms.

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point (°F)

Not applicable

Flash Point (°C)

Not applicable


가장 최신 버전 중 하나를 선택하세요:

시험 성적서(COA)

Lot/Batch Number

적합한 버전을 찾을 수 없으신가요?

특정 버전이 필요한 경우 로트 번호나 배치 번호로 특정 인증서를 찾을 수 있습니다.

이 제품을 이미 가지고 계십니까?

문서 라이브러리에서 최근에 구매한 제품에 대한 문서를 찾아보세요.

문서 라이브러리 방문

Assembly of phosphonic acids on GaN and AlGaN
Simpkins BS, et al.
Journal of Physics D: Applied Physics, 43(1), 015303-015303 (2009)
Quantitative photoelectrochemical detection of biotin conjugated CdSe/ZnS quantum dots on the avidin immobilized ITO electrodes
Bas D and ?smail HB
Electroanalysis, 21(16), 1829-1834 (2009)
Self-assembly of organic acid molecules on the metal oxide surface of a cupronickel alloy
Kruszewski KM, et al.
Thin Solid Films, 520(13), 4326-4331 (2012)
Formation of nanosized phosphonic acid self assembled monolayers on cobalt-chromium alloy for potential biomedical applications
Bhure R, et al.
Journal of Biomedical Nanotechnology, 6(2), 117-128 (2010)
Aruna Chandra Singh et al.
Biosensors & bioelectronics, 126, 15-22 (2018-11-06)
Advances in nanostructured materials have facilitated the development of novel sensitive techniques for detection of environmental and clinical analytes. There is immense need for development of devices that can detect analytes at concentrations as low as few pg mL-1. The

문서

There is widespread demand for thin, lightweight, and flexible electronic devices such as displays, sensors, actuators, and radio-frequency identification tags (RFIDs). Flexibility is necessary for scalability, portability, and mechanical robustness.

Inorganic nanomaterials are tunable by size, shape, structure, and/or composition. Advances in the synthesis of well-defined nanomaterials have enabled control over their unique optical, electronic, and chemical properties stimulating tremendous interest across a wide range of disciplines. This article illuminates some of the recent research advances of inorganic nanoparticles (NPs) in optoelectronics applications.

Self-assembled monolayers (SAMs) have attracted enormous interest for a wide variety of applications in micro- and nano-technology. In this article, we compare the benefits of three different classes of SAM systems (alkylthiolates on gold.

자사의 과학자팀은 생명 과학, 재료 과학, 화학 합성, 크로마토그래피, 분석 및 기타 많은 영역을 포함한 모든 과학 분야에 경험이 있습니다..

고객지원팀으로 연락바랍니다.