콘텐츠로 건너뛰기
Merck
모든 사진(2)

문서

326046

Sigma-Aldrich

Yttrium(III) acetate hydrate

99.9% metals basis

동의어(들):

Yttrium triacetate

로그인조직 및 계약 가격 보기


About This Item

Linear Formula:
(CH3CO2)3Y · xH2O
CAS Number:
Molecular Weight:
266.04 (anhydrous basis)
EC Number:
MDL number:
UNSPSC 코드:
12352103
PubChem Substance ID:
NACRES:
NA.23

분석

99.9% metals basis

형태

powder

반응 적합성

core: yttrium
reagent type: catalyst

SMILES string

O.CC(=O)O[Y](OC(C)=O)OC(C)=O

InChI

1S/3C2H4O2.H2O.Y/c3*1-2(3)4;;/h3*1H3,(H,3,4);1H2;/q;;;;+3/p-3

InChI key

JRKVGRAQLBXGQB-UHFFFAOYSA-K

애플리케이션


  • Optical study of Yttrium oxide doped with zinc prepared by simple methods: The research investigates the optical properties of yttrium oxide doped with zinc, using yttrium acetate hydrate in the synthesis process. (Bhavani, Ganesan, 2015).

  • Thermal decomposition of yttrium propionate: film and powder: This paper details the thermal decomposition behavior of yttrium propionate, a compound related to yttrium acetate, providing insights into decomposition mechanisms and thermal stability. (Rasi et al., 2018).

  • In Situ Ternary Adduct Formation of Yttrium Polyaminocarboxylates Leads to Small Molecule Capture and Activation: This research investigates the formation of ternary adducts with yttrium complexes, using acetate and other ligands, demonstrating potential applications in small molecule activation. (Tickner et al., 2022).

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point (°F)

Not applicable

Flash Point (°C)

Not applicable

개인 보호 장비

dust mask type N95 (US), Eyeshields, Gloves


시험 성적서(COA)

제품의 로트/배치 번호를 입력하여 시험 성적서(COA)을 검색하십시오. 로트 및 배치 번호는 제품 라벨에 있는 ‘로트’ 또는 ‘배치’라는 용어 뒤에서 찾을 수 있습니다.

이 제품을 이미 가지고 계십니까?

문서 라이브러리에서 최근에 구매한 제품에 대한 문서를 찾아보세요.

문서 라이브러리 방문

Huihui Wang et al.
Talanta, 197, 558-566 (2019-02-18)
A selective, simple and environment-friendly type fluorescence sensing platform between upconversion nanoparticles (UCNPs) and melanin-like polymer utilizing the photoinduced electron-transfer (PET) mechanism was developed. The effective fluorescence quenching of UCNPs by melanin-like polymers could detect tyramine and tyrosinase (TYR) activity
Qianqian Su et al.
Frontiers in chemistry, 8, 836-836 (2020-10-24)
Lanthanide-based upconversion nanoparticles can convert low-energy excitation to high-energy emission. The self-assembled upconversion nanoparticles with unique structures have considerable promise in sensors and optical devices due to intriguing properties. However, the assembly of isotropic nanocrystals into anisotropic structures is a
Wei Kong et al.
Inorganic chemistry, 56(2), 872-877 (2017-01-06)
Lanthanide-doped upconversion nanoparticles with a suitable surface coating are appealing for biomedical applications. Because high-quality upconversion nanoparticles are typically prepared in an organic solvent and passivated by hydrophobic oleate ligands, a convenient and reliable method for the surface modification of
Tianying Sun et al.
Chemphyschem : a European journal of chemical physics and physical chemistry, 17(5), 766-770 (2015-10-01)
Surface coating is a commonly used strategy to enhance upconversion emissions by shielding the luminescent core from surface quenching. In this work, we provide insights into the effect of surface coating on upconversion by investigating NaYF4 :Yb/Er nanoparticles and the
Shihua Li et al.
ACS nano, 13(2), 2103-2113 (2019-01-16)
The exploitation of gas therapy platforms holds great promise as a "green" approach for selective cancer therapy, however, it is often associated with some challenges, such as uncontrolled or insufficient gas generation and unclear therapeutic mechanisms. In this work, a

문서

Advanced Inorganic Materials for Solid State Lighting

자사의 과학자팀은 생명 과학, 재료 과학, 화학 합성, 크로마토그래피, 분석 및 기타 많은 영역을 포함한 모든 과학 분야에 경험이 있습니다..

고객지원팀으로 연락바랍니다.